TRANSFORMATIVE APPLICATIONS OF AI IN HEALTHCARE AND PHARMACEUTICAL INNOVATION
DOI:
https://doi.org/10.22159/ijap.2025v17i3.52719Keywords:
Artificial intelligence (AI), Pharmacokinetics (PK), Pharmacodynamics (PD), Clinical trials (CT), Reinforcement learning (RL), Natural Language Processing (NLP), Generative adversarial networks (GANs), Variational autoencoders (VAEs)Abstract
Artificial Intelligence (AI) is transforming the drug development and Clinical Trials by improving efficiency, accuracy, and decision-making. AI predicts Pharmacokinetic (PK) and Pharmacodynamic (PD) properties, automates compound screening and enhances clinical testing throughput. In trial design, AI optimizes patient stratification and outcome prediction by analyzing vast datasets from previous trials and electronic health records, leading to cost-effective and adaptive trials. AI also facilitates real-time data monitoring, identifying discrepancies early to ensure data integrity and regulatory compliance. By integrating diverse data sources it streamlines clinical operations, reducing human error and manual workload. However, challenges persist in data quality and integration due to varying standards across sources, necessitating advanced harmonization techniques. Regulatory frameworks often lag behind AI advancements, creating uncertainty and potential delays. Ethical concerns, including patient privacy and data security, must also be addressed for responsible AI implementation. Establishing standardized protocols and ensuring regulatory alignment are critical for AI’s successful integration into clinical research. In conclusion, AI revolutionizes drug development and clinical trials, enhancing efficiency and accuracy. However, overcoming data, regulatory, and ethical challenges is essential for its widespread adoption.
References
Chowdhary KR. Natural language processing. In: Fundamentals of artificial intelligence. New Delhi: Springer India; 2020. p. 603-49. doi: 10.1007/978-81-322-3972-7_19.
Janowski A. Natural language processing techniques for clinical text analysis in healthcare. J Adv Anal Healthc Manag. 2023;7(1):51-76.
Bose P, Roy S, Ghosh P. A comparative NLP-based study on the current trends and future directions in COVID-19 research. IEEE Access. 2021;9:78341-55. doi: 10.1109/ACCESS.2021.3082108, PMID 34786315.
Bougioukas KI, Bouras EC, Avgerinos KI, Dardavessis T, Haidich AB. How to keep up to date with medical information using web‐based resources: a systematised review and narrative synthesis. Health Info Libr J. 2020;37(4):254-92. doi: 10.1111/hir.12318, PMID 32691960.
Mayer T, Marro S, Cabrio E, Villata S. Enhancing evidence-based medicine with natural language argumentative analysis of clinical trials. Artif Intell Med. 2021 Aug;118:102098. doi: 10.1016/j.artmed.2021.102098, PMID 34412851.
Marafino BJ, Park M, Davies JM, Thombley R, Luft HS, Sing DC. Validation of prediction models for critical care outcomes using natural language processing of electronic health record data. JAMA Netw Open. 2018;1(8):e185097. doi: 10.1001/jamanetworkopen.2018.5097, PMID 30646310.
Oladele OK. Natural language processing in healthcare: transforming electronic health records and clinical decision support; 2024.
Ahmed U, Iqbal K, Aoun M. Natural language processing for clinical decision support systems: a review of recent advances in healthcare. J Intell Connect Emerg Technol. 2023;8(2):1-16.
Jiang J, Chen L, KE L, Dou B, Zhang C, Feng H. A review of transformers in drug discovery and beyond. J Pharm Anal. 2024 Aug 30;101081. doi: 10.1016/j.jpha.2024.101081.
Zheng CJ, Han LY, Yap CW, JI ZL, Cao ZW, Chen YZ. Therapeutic targets: progress of their exploration and investigation of their characteristics. Pharmacol Rev. 2006;58(2):259-79. doi: 10.1124/pr.58.2.4, PMID 16714488.
Romano JD, Tatonetti NP. Informatics and computational methods in natural product drug discovery: a review and perspectives. Front Genet. 2019 Apr 30;10:368. doi: 10.3389/fgene.2019.00368, PMID 31114606.
RN, Khan SB, Kumar AV, TR M, Alojail M, Sangwan SR. Enhancing drug discovery and patient care through advanced analytics with the power of NLP and machine learning in pharmaceutical data interpretation. SLAS Technol. 2025;31:100238. doi: 10.1016/j.slast.2024.100238, PMID 39722407.
Domatzoglou A. An NLP approach for drug repurposing based on mental health reviews. Tilburg University; 2023. p. 1-48.
Sreejith R, Sinimole KR. User-centric evaluation of EHR software through NLP-driven investigation: implications for product development and user experience. J Open Innov Technol Mark Complexity. 2024;10(1):100206. doi: 10.1016/j.joitmc.2023.100206.
Huang D, Yang M, Wen X, Xia S, Yuan B. AI-driven drug discovery: accelerating the development of novel therapeutics in biopharmaceuticals. J Knowl Learn Sci Technol. 2024;3(3):206-24. doi: 10.60087/jklst.vol3.n3.p.206-224.
Shariff A, Kangas J, Coelho LP, Quinn S, Murphy RF. Automated image analysis for high content screening and analysis. J Biomol Screen. 2010;15(7):726-34. doi: 10.1177/1087057110370894, PMID 20488979.
Wang MH, Xing L, Pan Y, GU F, Fang J, YU X. AI-based advanced approaches and dry eye disease detection based on multi-source evidence: cases applications issues and future directions. Big Data Min Anal. 2024;7(2):445-84. doi: 10.26599/BDMA.2023.9020024.
Gurcan MN, Boucheron LE, Can A, Madabhushi A, Rajpoot NM, Yener B. Histopathological image analysis: a review. IEEE Rev Biomed Eng. 2009;2:147-71. doi: 10.1109/RBME.2009.2034865, PMID 20671804.
Cheng Y, Gong Y, Liu Y, Song B, Zou Q. Molecular design in drug discovery: a comprehensive review of deep generative models. Brief Bioinform. 2021;22(6):bbab344. doi: 10.1093/bib/bbab344, PMID 34415297.
El Kaddoury M, Mahmoudi A, Himmi MM, Editors. Deep generative models for image generation: a practical comparison between variational autoencoders and generative adversarial networks. Mobile secure and programmable networking: 5th International Conference MSPN 2019, Mohammedia Morocco; 2019. p. 5.
Miller AI. The artist in the machine: the world of AI-powered creativity: Mit Press; 2019.
Kim PT. Data driven discrimination at work. Wm & Mary L Rev. 2016;58(3):857.
Liu X, Hsieh CJ, Editors. Rob-Gan: generator discriminator and adversarial attacker. In: proceedings of the IEEE/CVF conference on computer vision and pattern recognition. New York: IEEE; 2019. p. 11226-35. doi: 10.1109/CVPR.2019.01149.
Martinelli DD. Generative machine learning for de novo drug discovery: a systematic review. Comput Biol Med. 2022;145:105403. doi: 10.1016/j.compbiomed.2022.105403, PMID 35339849.
Tadeusiewicz R. Modern computational intelligence methods for the interpretation of medical images. Springer Science Business Media; 2008.
Zhao HK, Osher S, Fedkiw R, Editors. Fast surface reconstruction using the level set method. In: Proceedings of the IEEE workshop on variational and level set methods in computer vision; 2001: IEEE.
Vogt M. Using deep neural networks to explore chemical space. Expert Opin Drug Discov. 2022;17(3):297-304. doi: 10.1080/17460441.2022.2019704, PMID 34918594.
Craik DJ, Fairlie DP, Liras S, Price D. The future of peptide based drugs. Chem Biol Drug Des. 2013;81(1):136-47. doi: 10.1111/cbdd.12055, PMID 23253135.
Thomford NE, Senthebane DA, Rowe A, Munro D, Seele P, Maroyi A. Natural products for drug discovery in the 21st century: innovations for novel drug discovery. Int J Mol Sci. 2018;19(6):1578. doi: 10.3390/ijms19061578, PMID 29799486.
Boussioux L, Lane JN, Zhang M, Jacimovic V, Lakhani KR. The crowdless future? Generative AI and creative problem solving. Organ Sci. 2024;35(5):1589-607. doi: 10.1287/orsc.2023.18430.
Khanna I. Drug discovery in pharmaceutical industry: productivity challenges and trends. Drug Discov Today. 2012;17(19-20):1088-102. doi: 10.1016/j.drudis.2012.05.007, PMID 22627006.
Romanelli V, Cerchia C, Lavecchia A. Unlocking the potential of generative artificial intelligence in drug discovery. In: Lyu Z, editor. Applications of generative AI. Cham: Springer International Publishing; 2024. p. 37-63. doi: 10.1007/978-3-031-46238-2_3.
Nguyen H. De novo molecular design using deep learning: open access te Herenga Waka-victoria University of Wellington; 2024.
Sousa T, Correia J, Pereira V, Rocha M. Generative deep learning for targeted compound design. J Chem Inf Model. 2021;61(11):5343-61. doi: 10.1021/acs.jcim.0c01496, PMID 34699719.
Gordon EM, Barrett RW, Dower WJ, Fodor SP, Gallop MA. Applications of combinatorial technologies to drug discovery. 2. Combinatorial organic synthesis library screening strategies and future directions. J Med Chem. 1994;37(10):1385-401. doi: 10.1021/jm00036a001, PMID 8182695.
XU Y, Lin K, Wang S, Wang L, Cai C, Song C. Deep learning for molecular generation. Future Med Chem. 2019;11(6):567-97. doi: 10.4155/fmc-2018-0358, PMID 30698019.
Elton DC, Boukouvalas Z, Fuge MD, Chung PW. Deep learning for molecular design a review of the state of the art. Mol Syst Des Eng. 2019;4(4):828-49. doi: 10.1039/C9ME00039A.
Zhao L, WU Q, Long Y, QU Q, QI F, Liu L. Micro RNAs: critical targets for treating rheumatoid arthritis angiogenesis. J Drug Target. 2024;32(1):1-20. doi: 10.1080/1061186X.2023.2284097, PMID 37982157.
Mariam Z, Niazi SK, Magoola M. Unlocking the future of drug development: generative AI digital twins and beyond. Bio Med Informatics. 2024;4(2):1441-56. doi: 10.3390/biomedinformatics4020079.
Biswas N, Chakrabarti S. Artificial intelligence (AI) based systems biology approaches in multi-omics data analysis of cancer. Front Oncol. 2020;10:588221. doi: 10.3389/fonc.2020.588221, PMID 33154949.
LI R, LI L, XU Y, Yang J. Machine learning meets omics: applications and perspectives. Brief Bioinform. 2022;23(1):bbab460. doi: 10.1093/bib/bbab460, PMID 34791021.
Vadapalli S, Abdelhalim H, Zeeshan S, Ahmed Z. Artificial intelligence and machine learning approaches using gene expression and variant data for personalized medicine. Brief Bioinform. 2022;23(5):bbac191. doi: 10.1093/bib/bbac191, PMID 35595537.
Chakraborty S, Sharma G, Karmakar S, Banerjee S. Multi-OMICS approaches in cancer biology: new era in cancer therapy. Biochim Biophys Acta Mol Basis Dis. 2024;1870(5):167120. doi: 10.1016/j.bbadis.2024.167120, PMID 38484941.
Dhudum R, Ganeshpurkar A, Pawar A. Revolutionizing drug discovery: a comprehensive review of AI applications. Drugs Drug Candidates. 2024;3(1):148-71. doi: 10.3390/ddc3010009.
Koutsoukas A, Simms B, Kirchmair J, Bond PJ, Whitmore AV, Zimmer S. From in silico target prediction to multi-target drug design: current databases methods and applications. J Proteomics. 2011;74(12):2554-74. doi: 10.1016/j.jprot.2011.05.011, PMID 21621023.
Pun FW, Ozerov IV, Zhavoronkov A. AI powered therapeutic target discovery. Trends Pharmacol Sci. 2023;44(9):561-72. doi: 10.1016/j.tips.2023.06.010, PMID 37479540.
Myszczynska MA. Uncovering novel drug therapies and targets for amyotrophic lateral sclerosis (ALS) using artificial intelligence (AI). University of Sheffield; 2021.
Bakkar N, Kovalik T, Lorenzini I, Spangler S, Lacoste A, Sponaugle K. Artificial intelligence in neurodegenerative disease research: use of IBM watson to identify additional RNA-binding proteins altered in amyotrophic lateral sclerosis. Acta Neuropathol. 2018;135(2):227-47. doi: 10.1007/s00401-017-1785-8, PMID 29134320.
Geraci J, Bhargava R, Qorri B, Leonchyk P, Cook D, Cook M. Machine learning hypothesis generation for patient stratification and target discovery in rare disease: our experience with open science in ALS. Front Comp Neurosci. 2023;17:1199736. doi: 10.3389/fncom.2023.1199736, PMID 38260713.
Han S, Lee JE, Kang S, SO M, Jin H, Lee JH. Standigm ASK™: knowledge graph and artificial intelligence platform applied to target discovery in idiopathic pulmonary fibrosis. Brief Bioinform. 2024;25(2):bbae035. doi: 10.1093/bib/bbae035, PMID 38349059.
Chen B, Garmire L, Calvisi DF, Chua MS, Kelley RK, Chen X. Harnessing big ‘omics’ data and AI for drug discovery in hepatocellular carcinoma. Nat Rev Gastroenterol Hepatol. 2020;17(4):238-51. doi: 10.1038/s41575-019-0240-9, PMID 31900465.
Jones CH, Madhavan S, Natarajan K, Corbo M, True JM, Dolsten M. Rewriting the textbook for pharma: how to adapt and thrive in a digital personalized and collaborative world. Drug Discov Today. 2024;29(9):104112. doi: 10.1016/j.drudis.2024.104112, PMID 39053620.
Qureshi R, Irfan M, Gondal TM, Khan S, WU J, Hadi MU. AI in drug discovery and its clinical relevance. Heliyon. 2023;9(7):e17575. doi: 10.1016/j.heliyon.2023.e17575, PMID 37396052.
Abbas MK, Rassam A, Karamshahi F, Abunora R, Abouseada M. The role of AI in drug discovery. Chem Bio Chem. 2024;25(14):e202300816. doi: 10.1002/cbic.202300816, PMID 38735845.
Ozturk H, Ozgur A, Ozkirimli E. Deep DTA: deep drug-target binding affinity prediction. Bioinformatics. 2018;34(17):i821-9. doi: 10.1093/bioinformatics/bty593, PMID 30423097.
Hjalmarsson H, Gevers M, Gunnarsson S, Lequin O. Iterative feedback tuning: theory and applications. IEEE Control Syst. 1998;18(4):26-41. doi: 10.1109/37.710876.
Filimonov DA, Druzhilovskiy DS, Lagunin AA, Gloriozova TA, Rudik AV, Dmitriev AV. Computer-aided prediction of biological activity spectra for chemical compounds: opportunities and limitations. Biomed Chem Res Methods. 2018;1(1):e00004. doi: 10.18097/BMCRM00004.
Liu G, Singha M, PU L, Neupane P, Feinstein J, WU HC. Graph DTI: a robust deep learning predictor of drug target interactions from multiple heterogeneous data. J Cheminform. 2021;13(1):58. doi: 10.1186/s13321-021-00540-0, PMID 34380569.
Stanzione F, Giangreco I, Cole JC. Use of molecular docking computational tools in drug discovery. Prog Med Chem. 2021;60:273-343. doi: 10.1016/bs.pmch.2021.01.004, PMID 34147204.
Kampen S. Structure based virtual screening for ligands of G protein coupled receptors: design of allosteric and dual target modulators; 2022.
Shen L, Margolies LR, Rothstein JH, Fluder E, McBride R, Sieh W. Deep learning to improve breast cancer detection on screening mammography. Sci Rep. 2019;9(1):12495. doi: 10.1038/s41598-019-48995-4, PMID 31467326.
Chon A, Balachandar N, LU P. Deep convolutional neural networks for lung cancer detection. Stanford University; 2017. p. 1-9.
Horasan A, Gunes A. Advancing prostate cancer diagnosis: a deep learning approach for enhanced detection in MRI images. Diagnostics (Basel). 2024;14(17):1871. doi: 10.3390/diagnostics14171871, PMID 39272656.
Judijanto L, Anggo S, Utami TP, Anurogo D, Ningrum D. The impact of the digital revolution on health research: a bibliometric review. J World Future Med Health Nurs. 2024;2(1):51-64. doi: 10.70177/health.v2i1.704.
Brasil S, Pascoal C, Francisco R, Dos Reis Ferreira V, Videira PA, Valadao AG. Artificial intelligence (AI) in rare diseases: is the future brighter? Genes. 2019;10(12):978. doi: 10.3390/genes10120978, PMID 31783696.
Bielinski SJ, Olson JE, Pathak J, Weinshilboum RM, Wang L, Lyke KJ. Preemptive genotyping for personalized medicine: design of the right drug right dose, right time using genomic data to individualize treatment protocol. Mayo Clin Proc. 2014;89(1):25-33. doi: 10.1016/j.mayocp.2013.10.021, PMID 24388019.
Papachristos A, Patel J, Vasileiou M, Patrinos GP. Dose optimization in oncology drug development: the emerging role of pharmacogenomics pharmacokinetics and pharmacodynamics. Cancers. 2023;15(12):3233. doi: 10.3390/cancers15123233, PMID 37370844.
Zhu H. Big data and artificial intelligence modeling for drug discovery. Annu Rev Pharmacol Toxicol. 2020;60(1):573-89. doi: 10.1146/annurev-pharmtox-010919-023324, PMID 31518513.
Cheng F, Zhao Z. Machine learning-based prediction of drug interactions by integrating drug phenotypic therapeutic chemical and genomic properties. J Am Med Inform Assoc. 2014;21(e2):e278-86. doi: 10.1136/amiajnl-2013-002512, PMID 24644270.
VO TH, Nguyen NT, Kha QH, LE NQ. On the road to explainable AI in drug-drug interactions prediction: a systematic review. Comp Struct Biotechnol J. 2022 Apr 19;20:2112-23. doi: 10.1016/j.csbj.2022.04.021, PMID 35832629.
Lounkine E, Keiser MJ, Whitebread S, Mikhailov D, Hamon J, Jenkins JL. Large scale prediction and testing of drug activity on side effect targets. Nature. 2012;486(7403):361-7. doi: 10.1038/nature11159, PMID 22722194.
Gayvert KM, Madhukar NS, Elemento O. A data driven approach to predicting successes and failures of clinical trials. Cell Chem Biol. 2016;23(10):1294-301. doi: 10.1016/j.chembiol.2016.07.023, PMID 27642066.
Dara S, Dhamercherla S, Jadav SS, Babu CM, Ahsan MJ. Machine learning in drug discovery: a review. Artif Intell Rev. 2022;55(3):1947-99. doi: 10.1007/s10462-021-10058-4, PMID 34393317.
Woodcock J. The prospects for personalized medicine in drug development and drug therapy. Clin Pharmacol Ther. 2007;81(2):164-9. doi: 10.1038/sj.clpt.6100063, PMID 17259943.
Mutha RE, Bagul VS, Tade RS, Vinchurkar K. An overview of artificial intelligence (AI) in drug delivery and development. AI Innov Drug Deliv Pharm Sci Advanc Ther Technol. 2024;1.
Hemamalini V, Tyagi AK, Vennila V, Kumari S. Revolutionizing drug discovery with cutting edge technologies: issue and challenges for the next decade. In: Tripathi RK, Tiwari S, Editors. Converging pharmacy science and engineering in computational drug discovery. IGI Global; 2024. p. 76-89. doi: 10.4018/979-8-3693-2897-2.ch004.
Shah P, Kendall F, Khozin S, Goosen R, HU J, Laramie J. Artificial intelligence and machine learning in clinical development: a translational perspective. NPJ Digit Med. 2019;2(1):69. doi: 10.1038/s41746-019-0148-3, PMID 31372505.
Al Worafi YM. Technology for drug safety: current status and future developments: springer; 2023.
Batool M, Ahmad B, Choi S. A structure based drug discovery paradigm. Int J Mol Sci. 2019;20(11):2783. doi: 10.3390/ijms20112783, PMID 31174387.
Vatansever S, Schlessinger A, Wacker D, Kaniskan HU, Jin J, Zhou MM. Artificial intelligence and machine learning aided drug discovery in central nervous system diseases: state of the arts and future directions. Med Res Rev. 2021;41(3):1427-73. doi: 10.1002/med.21764, PMID 33295676.
Marques L, Costa B, Pereira M, Silva A, Santos J, Saldanha L. Advancing precision medicine: a review of innovative in silico approaches for drug development clinical pharmacology and personalized healthcare. Pharmaceutics. 2024;16(3):332. doi: 10.3390/pharmaceutics16030332, PMID 38543226.
Vattikuti MC. Improving drug discovery and development using AI: opportunities and challenges. Res Gate J. 2024;10(10).
Agamah FE, Mazandu GK, Hassan R, Bope CD, Thomford NE, Ghansah A. Computational/in silico methods in drug target and lead prediction. Brief Bioinform. 2020;21(5):1663-75. doi: 10.1093/bib/bbz103, PMID 31711157.
Mishra V. Artificial intelligence: the beginning of a new era in pharmacy profession. Asian J Pharm (AJP). 2018;12(2):72.
Wang J, Urban L. The impact of early ADME profiling on drug discovery and development strategy. DDW Drug Discov World. 2004;5(4):73-86.
Joshi C, Makwana D. Advanced high throughput screening platforms in drug discovery. In: Parikesit AA, Naderi M, Singh A, Konnur RG, Mukherjee S, editors. Genomics Driven Drug Discovery through Pharmacogenomics. IGI Global; 2024. p. 35-74. doi: 10.4018/979-8-3693-6597-7.ch002.
Cichonska A, Ravikumar B, Rahman R. AI for targeted polypharmacology: the next frontier in drug discovery. Curr Opin Struct Biol. 2024;84:102771. doi: 10.1016/j.sbi.2023.102771, PMID 38215530.
Bannach Brown A, Hair K, Bahor Z, Soliman N, Macleod M, Liao J. Technological advances in preclinical meta research. BMJ Open Sci. 2021;5(1):e100131. doi: 10.1136/bmjos-2020-100131, PMID 35047701.
Suriyaamporn P, Pamornpathomkul B, Patrojanasophon P, Ngawhirunpat T, Rojanarata T, Opanasopit P. The artificial intelligence-powered new era in pharmaceutical research and development: a review. AAPS Pharm Sci Tech. 2024;25(6):188. doi: 10.1208/s12249-024-02901-y, PMID 39147952.
Vashishat A, Patel P, Das Gupta G, Das Kurmi B. Alternatives of animal models for biomedical research: a comprehensive review of modern approaches. Stem Cell Rev Rep. 2024;20(4):881-99. doi: 10.1007/s12015-024-10701-x, PMID 38429620.
Chang M, Balser J, Roach J, Bliss R. Innovative strategies statistical solutions and simulations for modern clinical trials. Chapman & Hall/CRC; 2019. doi: 10.1201/9781351214544.
Spertus JA, Birmingham MC, Butler J, Lingvay I, Lanfear DE, Abbate A. Novel trial design: CHIEF-HF. Circ Heart Fail. 2021;14(3):e007767. doi: 10.1161/CIRCHEARTFAILURE.120.007767, PMID 33724883.
Duffy MJ, O Donovan N, Crown J. Use of molecular markers for predicting therapy response in cancer patients. Cancer Treat Rev. 2011;37(2):151-9. doi: 10.1016/j.ctrv.2010.07.004, PMID 20685042.
Manzari MT, Shamay Y, Kiguchi H, Rosen N, Scaltriti M, Heller DA. Targeted drug delivery strategies for precision medicines. Nat Rev Mater. 2021;6(4):351-70. doi: 10.1038/s41578-020-00269-6, PMID 34950512.
Roth BJ, Krilov L, Adams S, Aghajanian CA, Bach P, Braiteh F. Clinical cancer advances 2012: annual report on progress against cancer from the American society of clinical oncology. J Clin Oncol. 2013;31(1):131-61. doi: 10.1200/JCO.2012.47.1938, PMID 23213095.
Kawamoto K, Houlihan CA, Balas EA, Lobach DF. Improving clinical practice using clinical decision support systems: a systematic review of trials to identify features critical to success. BMJ. 2005;330(7494):765. doi: 10.1136/bmj.38398.500764.8F, PMID 15767266.
Sutton RT, Pincock D, Baumgart DC, Sadowski DC, Fedorak RN, Kroeker KI. An overview of clinical decision support systems: benefits risks and strategies for success. NPJ Digit Med. 2020;3(1):17. doi: 10.1038/s41746-020-0221-y, PMID 32047862.
Yin J, Ngiam KY, Teo HH. Role of artificial intelligence applications in real-life clinical practice: systematic review. J Med Internet Res. 2021;23(4):e25759. doi: 10.2196/25759, PMID 33885365.
Khatiwada P, Yang B, Lin JC, Blobel B. Patient generated health data (PGHD): understanding requirements challenges and existing techniques for data security and privacy. J Pers Med. 2024;14(3):282. doi: 10.3390/jpm14030282, PMID 38541024.
Aldoseri A, Al Khalifa KN, Hamouda AM. Re-thinking data strategy and integration for artificial intelligence: concepts opportunities and challenges. Appl Sci. 2023;13(12):7082. doi: 10.3390/app13127082.
Bates DW, Levine D, Syrowatka A, Kuznetsova M, Craig KJ, Rui A. The potential of artificial intelligence to improve patient safety: a scoping review. NPJ Digit Med. 2021;4(1):54. doi: 10.1038/s41746-021-00423-6, PMID 33742085.
Dash K. Machine learning applications for detecting anomalies and ensuring data integrity in clinical trials; 2023.
Bohlmann A, Mostafa J, Kumar M. Machine learning and medication adherence: scoping review. Med. 2021;2(4):e26993. doi: 10.2196/26993, PMID 37725549.
Kreimeyer K, Foster M, Pandey A, Arya N, Halford G, Jones SF. Natural language processing systems for capturing and standardizing unstructured clinical information: a systematic review. J Biomed Inform. 2017 Sep;73:14-29. doi: 10.1016/j.jbi.2017.07.012, PMID 28729030.
Venkateswarulu N, Pavan Kumar P, Obulesu O. Predictive analytics in healthcare. In: Singh N, Birla S, Ansari MD, Shukla NK, editors. Intelligent techniques for predictive data analytics. Chichester: John Wiley & Sons; 2024. p. 71-87. doi: 10.1002/9781394227990.ch4.
Ovy NH, Begum A. The role of AI in optimizing adaptive trials for improved clinical success and patient focus. J Multidiscip Res. 2024;10(2):152-73.
Hanna E, Remuzat C, Auquier P, Toumi M. Gene therapies development: slow progress and promising prospect. J Mark Access Health Policy. 2017;5(1):1265293. doi: 10.1080/20016689.2017.1265293, PMID 28265348.
Kumar SA, Ananda Kumar TD, Beeraka NM, Pujar GV, Singh M, Narayana Akshatha HS. Machine learning and deep learning in data driven decision making of drug discovery and challenges in high-quality data acquisition in the pharmaceutical industry. Future Med Chem. 2022;14(4):245-70. doi: 10.4155/fmc-2021-0243, PMID 34939433.
Dziura JD, Post LA, Zhao Q, FU Z, Peduzzi P. Strategies for dealing with missing data in clinical trials: from design to analysis. Yale J Biol Med. 2013;86(3):343-58. PMID 24058309.
Tong L, Shi W, Isgut M, Zhong Y, Lais P, Gloster L. Integrating multi omics data with EHR for precision medicine using advanced artificial intelligence. IEEE Rev Biomed Eng. 2024;17:80-97. doi: 10.1109/RBME.2023.3324264, PMID 37824325.
Carter AB, Abruzzo LV, Hirschhorn JW, Jones D, Jordan DC, Nassiri M. Electronic health records and genomics: perspectives from the association for molecular pathology electronic health record (EHR) interoperability for clinical genomics data working group. J Mol Diagn. 2022;24(1):1-17. doi: 10.1016/j.jmoldx.2021.09.009, PMID 34656760.
Pezoulas VC, Fotiadis DI. The pivotal role of data harmonization in revolutionizing global healthcare: a framework and a case study. Conn Health Telemed. 2024;3(2). doi: 10.20517/chatmed.2023.37.
Niazi SK, Mariam Z. Computer-aided drug design and drug discovery: a prospective analysis. Pharmaceuticals (Basel). 2023;17(1):22. doi: 10.3390/ph17010022, PMID 38256856.
Metke Jimenez A, Steel J, Hansen D, Lawley M. Ontoserver: a syndicated terminology server. J Biomed Semantics. 2018;9(1):24. doi: 10.1186/s13326-018-0191-z, PMID 30223897.
Palchuk MB, London JW, Perez Rey D, Drebert ZJ, Winer Jones JP, Thompson CN. A global federated real-world data and analytics platform for research. JAMIA Open. 2023;6(2):ooad035. doi: 10.1093/jamiaopen/ooad035, PMID 37193038.
Vorisek CN, Lehne M, Klopfenstein SA, Mayer PJ, Bartschke A, Haese T. Fast healthcare interoperability resources (FHIR) for interoperability in health research: systematic review. JMIR Med Inform. 2022;10(7):e35724. doi: 10.2196/35724, PMID 35852842.
Machireddy JR. Artificial intelligence based approach to perform monitoring and diagnostic process for a holistic environment. Int J Comput Sci Eng Res Dev (IJCSERD). 2024;14(2):71-88.
Olatunji Akinrinola, Chinwe Chinazo Okoye, Onyeka Chrisanctus Ofodile, Chinonye Esther Ugochukwu. Navigating and reviewing ethical dilemmas in AI development: strategies for transparency fairness and accountability. GSC Adv Res Rev. 2024;18(3):50-8. doi: 10.30574/gscarr.2024.18.3.0088.
Nikfal N. A development process framework for artificial intelligence/machine learning (AI/ML) based connected health informatics: purdue university graduate school; 2024.
Blanco Gonzalez A, Cabezon A, Seco Gonzalez A, Conde Torres D, Antelo Riveiro P, Pineiro A. The role of AI in drug discovery: challenges opportunities and strategies. Pharmaceuticals (Basel). 2023;16(6):891. doi: 10.3390/ph16060891, PMID 37375838.
Norori N, HU Q, Aellen FM, Faraci FD, Tzovara A. Addressing bias in big data and AI for health care: a call for open science. Patterns (NY). 2021;2(10):100347. doi: 10.1016/j.patter.2021.100347, PMID 34693373.
Hanna M, Pantanowitz L, Jackson B, Palmer O, Visweswaran S, Pantanowitz J. Ethical and bias considerations in artificial intelligence (AI)/machine learning. Mod Pathol. 2025 Mar;38(3):100686.
Barnes E, Hutson J. Navigating the complexities of AI: the critical role of interpretability and explainability in ensuring transparency and trust. Educ Res (IJMCER). 2024;6(3):248-56.
Jaime FJ, Munoz A, Rodriguez Gomez F, Jerez Calero A. Strengthening privacy and data security in biomedical microelectromechanical systems by IoT communication security and protection in smart healthcare. Sensors (Basel). 2023;23(21):8944. doi: 10.3390/s23218944, PMID 37960646.
Lescrauwaet L, Wagner H, Yoon C, Shukla S. Adaptive legal frameworks and economic dynamics in emerging technologies: navigating the intersection for responsible innovation. Law Eco. 2022;16(3):202-20. doi: 10.35335/laweco.v16i3.61.
Meyer BC, Meyer DM, ST Germain E, Pham N, Alwood BT, Van Orden K. (Stroke DOC-AI): leveraging ai tools to optimize both hub and spoke in a telestroke network. NEJM AI Sponsored; 2024.
HE M, LI Z, Liu C, Shi D, Tan Z. Deployment of artificial intelligence in real-world practice: opportunity and challenge. Asia Pac J Ophthalmol (Phila). 2020;9(4):299-307. doi: 10.1097/APO.0000000000000301, PMID 32694344.
Wang Y, Zhang H, Sun A, Meng X, editors. Cort: a new baseline for comparative opinion classification by dual prompts. Findings of the Association for Computational Linguistics: EMNLP; 2022.
Jimenez Luna J, Grisoni F, Schneider G. Drug discovery with explainable artificial intelligence. Nat Mach Intell. 2020;2(10):573-84. doi: 10.1038/s42256-020-00236-4.
Jao I, Kombe F, Mwalukore S, Bull S, Parker M, Kamuya D. Research stakeholders views on benefits and challenges for public health research data sharing in Kenya: the importance of trust and social relations. Plos One. 2015;10(9):e0135545. doi: 10.1371/journal.pone.0135545, PMID 26331716.
Soundararajan R, Shenbagaraman V. Enhancing financial decision making through explainable AI and blockchain integration: improving transparency and trust in predictive models. Educational Administration Theor Pract. 2024;30(4):9341-51.
Hassija V, Chamola V, Mahapatra A, Singal A, Goel D, Huang K. Interpreting black box models: a review on explainable artificial intelligence. Cognit Comput. 2024;16(1):45-74. doi: 10.1007/s12559-023-10179-8.
Mirakhori F, Niazi SK. Harnessing the AI/ml in drug and biological products discovery and development: the regulatory perspective. Pharmaceuticals (Basel). 2025;18(1):47. doi: 10.3390/ph18010047, PMID 39861110.
Fan FL, Xiong J, LI M, Wang G. On interpretability of artificial neural networks: a survey. IEEE Trans Radiat Plasma Med Sci. 2021;5(6):741-60. doi: 10.1109/trpms.2021.3066428, PMID 35573928.
Guidotti R, Monreale A, Ruggieri S, Turini F, Giannotti F, Pedreschi D. A survey of methods for explaining black box models. ACM Comput Surv. 2019;51(5):1-42. doi: 10.1145/3236009.
Bhattacharya A. Applied machine learning explainability techniques: make ml models explainable and trustworthy for practical applications using lime shap and more. Packt Publishing Ltd; 2022.
Najafabadi MM, Villanustre F, Khoshgoftaar TM, Seliya N, Wald R, Muharemagic E. Deep learning applications and challenges in big data analytics. J Big Data. 2015;2(1):1-21. doi: 10.1186/s40537-014-0007-7.
Linardatos P, Papastefanopoulos V, Kotsiantis S. Explainable ai: a review of machine learning interpretability methods. Entropy (Basel). 2020;23(1):18. doi: 10.3390/e23010018, PMID 33375658.
Chen Y, Elenee Argentinis JD, Weber G. IBM watson: how cognitive computing can be applied to big data challenges in life sciences research. Clin Ther. 2016;38(4):688-701. doi: 10.1016/j.clinthera.2015.12.001, PMID 27130797.
Rothstein J, Berry J, Svendsen C, Thompson L, Finkbeiner S, Van Eyk J. Answer ALS: a large scale resource for sporadic and familial ALS combining clinical data with multi-omics data from induced pluripotent cell lines; 2020.
Singh S, Kaur N, Gehlot A. Application of artificial intelligence in drug design: a review. Comput Biol Med. 2024 Sep;179:108810. doi: 10.1016/j.compbiomed.2024.108810, PMID 38991316.
Adekunle JJ, Lawal MM, Abiodun WO, Nwose CC, Faderin E. The role of AI and ML in drug discovery and development. J Afr Innov Adv Stud; 2024.
Kiriiri GK, Njogu PM, Mwangi AN. Exploring different approaches to improve the success of drug discovery and development projects: a review. Future J Pharm Sci. 2020;6:1-12.
Uppalapati K, Dandamudi E, Ice SN, Chandra G, Bischof K, Lorson CL. A comprehensive guide to enhancing antibiotic discovery using machine learning-derived bio-computation. arXiv preprint arXiv: 241106009; 2024.
Schneider G. Automating drug discovery. Nat Rev Drug Discov. 2018;17(2):97-113. doi: 10.1038/nrd.2017.232, PMID 29242609.
Zeb S, Fnu N, Abbasi N, Fahad M. AI in healthcare: revolutionizing diagnosis and therapy. Int J Multidiscip Sci Arts. 2024;3(3):118-28. doi: 10.47709/ijmdsa.v3i3.4546.
Schork NJ. Artificial intelligence and personalized medicine. Cancer Treat Res. 2019;178:265-83. doi: 10.1007/978-3-030-16391-4_11, PMID 31209850.
Frank R, Hargreaves R. Clinical biomarkers in drug discovery and development. Nat Rev Drug Discov. 2003;2(7):566-80. doi: 10.1038/nrd1130, PMID 12838269.
Akter S. AI driven precision medicine: transforming personalized cancer treatment. J AI Powered Med Innov. 2024;2(1):10-21. doi: 10.60087/vol2iisue1.p21.
Tsiouris KM, Tsakanikas VD, Gatsios D, Fotiadis DI. A review of virtual coaching systems in healthcare: closing the loop with real-time feedback. Front Digit Health. 2020 Sep 30;2:567502. doi: 10.3389/fdgth.2020.567502, PMID 34713040.
Mohanty S, Harun AI Rashid MH, Mridul M, Mohanty C, Swayamsiddha S. Application of artificial intelligence in COVID-19 drug repurposing. Diabetes Metab Syndr. 2020;14(5):1027-31. doi: 10.1016/j.dsx.2020.06.068, PMID 32634717.
Serrano DR, Luciano FC, Anaya BJ, Ongoren B, Kara A, Molina G. Artificial intelligence (AI) applications in drug discovery and drug delivery: revolutionizing personalized medicine. Pharmaceutics. 2024;16(10):1328. doi: 10.3390/pharmaceutics16101328, PMID 39458657.
Shiwlani A, Khan M, Sherani AM, Qayyum MU, Hussain HK. Revolutionizing healthcare: the impact of artificial intelligence on patient care diagnosis and treatment. Jurihum J Inovasi Hum. 2024;1(5):779-90.
Saha S, Ahmad T. Federated transfer learning: concept and applications. Intell Artif. 2021;15(1):35-44. doi: 10.3233/IA-200075.
Beltran ET, Perez MQ, Sanchez PM, Bernal SL, Bovet G, Perez MG. Decentralized federated learning: fundamentals state of the art frameworks trends and challenges. IEEE Commun Surv Tutor. 2023.
Kalusivalingam AK, Sharma A, Patel N, Singh V. Enhancing drug discovery and repurposing through transformer models and reinforcement learning algorithms. Int J AI ML. 2021;2(3).
Kumar G, Yadav S, Mukherjee A, Hassija V, Guizani M. Recent advances in quantum computing for drug discovery and development. IEEE Access. 2024;12:64491-509. doi: 10.1109/ACCESS.2024.3376408.
Pei Z. Computer-aided drug discovery: from traditional simulation methods to language models and quantum computing. Cell Rep Phys Sci. 2024;5(12). doi: 10.1016/j.xcrp.2024.102334.
Prabhod K. Leveraging generative AI for personalized medicine: applications in drug discovery and development. J AI-Assist Sci Discov. 2023;3(1):392-434.
Cumming JG, Davis AM, Muresan S, Haeberlein M, Chen H. Chemical predictive modelling to improve compound quality. Nat Rev Drug Discov. 2013;12(12):948-62. doi: 10.1038/nrd4128, PMID 24287782.
Kaswan KS, Gaur L, Dhatterwal JS, Kumar R. AI-based natural language processing for the generation of meaningful information electronic health record (EHR) data. Advanced AI techniques and applications in bioinformatics. CRC Press; 2021. p. 41-86.
Bhatnagar R, Sardar S, Beheshti M, Podichetty JT. How can natural language processing help model informed drug development? a review. JAMIA Open. 2022;5(2):ooac043. doi: 10.1093/jamiaopen/ooac043, PMID 35702625.
Kolluri S, Lin J, Liu R, Zhang Y, Zhang W. Machine learning and artificial intelligence in pharmaceutical research and development: a review. AAPS J. 2022;24(1):19. doi: 10.1208/s12248-021-00644-3, PMID 34984579.
Garg HK. Integration of AI, ML and blockchain technology: transforming codes into life. IEHE The Quest. 2023;2(1):5-18. doi: 10.5281/zenodo.13885489.
Quazi S. Artificial intelligence and machine learning in precision and genomic medicine. Med Oncol. 2022;39(8):120. doi: 10.1007/s12032-022-01711-1, PMID 35704152.
LI Q, Lei Y, Zhang P, Liu Y, LU Q, Chang C. Future challenges and prospects for personalized epigenetics. In: Personalized epigenetics. Amsterdam: Elsevier; 2024. p. 721-44. doi: 10.1016/B978-0-443-23802-4.00019-3.
Bhambure R, Kumar K, Rathore AS. High throughput process development for biopharmaceutical drug substances. Trends Biotechnol. 2011;29(3):127-35. doi: 10.1016/j.tibtech.2010.12.001, PMID 21255855.
Maharjan R, Lee JC, Lee K, Han HK, Kim KH, Jeong SH. Recent trends and perspectives of artificial intelligence based machine learning from discovery to manufacturing in biopharmaceutical industry. J Pharm Investig. 2023;53(6):803-26. doi: 10.1007/s40005-023-00637-8.
Dara M, Dianatpour M, Azarpira N, Omidifar N. Convergence of CRISPR and artificial intelligence: a paradigm shift in biotechnology. Hum Gene. 2024 May;41:201297. doi: 10.1016/j.humgen.2024.201297.
Omidian H. Synergizing blockchain and artificial intelligence to enhance healthcare. Drug Discov Today. 2024;29(9):104111. doi: 10.1016/j.drudis.2024.104111, PMID 39034026.
Haleem A, Javaid M, Singh RP, Suman R, Rab S. Blockchain technology applications in healthcare: an overview. Int J Intell Netw. 2021;2:130-9. doi: 10.1016/j.ijin.2021.09.005.
Murgai A, Manju K, Paranjpye R, Jain K, Hati M. Integrating artificial intelligence with blockchain: a holistic examination of their combined effects on business performance across various sectors. Library of Progress Library Science Information Technology and Computer. CS H. 2024;44(3).
Tyagi AK. Privacy preservation of genomic and medical data. John Wiley & Sons; 2023.
Singh B, Kaunert C. Blockchain framework for precision medicine clinical trials and genomic biomarkers discovery: focuses on monitoring and managing data in health dimensions. In: Jermsittiparsert K, Marzo RR, editors. AI Technologies and Advancements for Psychological Well-Being and Healthcare. IGI Global; 2024. p. 255-88. doi: 10.4018/979-8-3693-9158-7.ch010.
Nwosu SN. Revolutionizing drug discovery: the impact of artificial intelligence on efficiency and accuracy. J Adv Med Pharm Sci. 2024;26(6):56-63. doi: 10.9734/jamps/2024/v26i6695.
Harrer S, Menard J, Rivers M, Green DV, Karpiak J, Jeliazkov JR. Artificial intelligence drives the digital transformation of pharma. Artificial intelligence in clinical practice. Elsevier; 2024. p. 345-72.
Tien JM. Internet of things real-time decision making and artificial intelligence. Ann Data Sci. 2017;4(2):149-78. doi: 10.1007/s40745-017-0112-5.
Subramanian M, Wojtusciszyn A, Favre L, Boughorbel S, Shan J, Letaief KB. Precision medicine in the era of artificial intelligence: implications in chronic disease management. J Transl Med. 2020;18(1):472. doi: 10.1186/s12967-020-02658-5, PMID 33298113.
Jakka S, Rossbach M. An economic perspective on personalized medicine. HUGO J. 2013;7(1):1-6. doi: 10.1186/1877-6566-7-1.
Alvarez Machancoses O, Fernandez Martinez JL. Using artificial intelligence methods to speed up drug discovery. Expert Opin Drug Discov. 2019;14(8):769-77. doi: 10.1080/17460441.2019.1621284, PMID 31140873.
Chowdhury A, Kunjiappan S, Panneerselvam T, Somasundaram B, Bhattacharjee C. Nanotechnology and nanocarrier based approaches on treatment of degenerative diseases. Int Nano Lett. 2017;7(2):91-122. doi: 10.1007/s40089-017-0208-0.
Petrova N. AI driven drug repurposing for novel therapeutic applications: utilizes ai algorithms to identify existing drugs with potential therapeutic applications in new disease areas. J Artif Intell Res Appl. 2024;4(1):182-90.
Jeyaraman N, Jeyaraman M, Yadav S, Ramasubramanian S, Balaji S. Revolutionizing healthcare: the emerging role of quantum computing in enhancing medical technology and treatment. Cureus. 2024;16(8):e67486. doi: 10.7759/cureus.67486, PMID 39310567.
Sharma P. Quantum computing in drug design: enhancing precision and efficiency in pharmaceutical development. Sage Sci Rev Appl Mach Learn. 2024;7(1):1-9.
Udegbe FC, Ebulue OR, Ebulue CC, Ekesiobi CS. Precision medicine and genomics: a comprehensive review of it-enabled approaches. IMSRJ. 2024;4(4):509-20. doi: 10.51594/imsrj.v4i4.1053.
Nahum Shani I, Smith SN, Spring BJ, Collins LM, Witkiewitz K, Tewari A. Just in time adaptive interventions (JITAIs) in mobile health: key components and design principles for ongoing health behavior support. Ann Behav Med. 2018;52(6):446-62. doi: 10.1007/s12160-016-9830-8, PMID 27663578.
Gordon M. Improving post approval risk surveillance for drugs: active post-market risk identification. Mich Telecomm Tech l Rev. 2008;15:297.
Thacharodi A, Singh P, Meenatchi R, Tawfeeq Ahmed ZH, Kumar RR, VN. Revolutionizing healthcare and medicine: the impact of modern technologies for a healthier future a comprehensive review. Health Care Sci. 2024;3(5):329-49. doi: 10.1002/hcs2.115, PMID 39479277.
Tiwari PC, Pal R, Chaudhary MJ, Nath R. Artificial intelligence revolutionizing drug development: exploring opportunities and challenges. Drug Dev Res. 2023 Dec;84(8):1652-63. doi: 10.1002/ddr.22115, PMID 37712494.
Zeb S, Fnu N, Abbasi N, Fahad M. AI in healthcare: revolutionizing diagnosis and therapy. IJMDSA. 2024;3(3):118-28. doi: 10.47709/ijmdsa.v3i3.4546.
Saha S, Ahmad T. Federated transfer learning: concept and applications. Intell Artif. 2021 Jan 1;15(1):35-44. doi: 10.3233/IA-200075.
Beltran ET, Perez MQ, Sanchez PM, Bernal SL, Bovet G, Perez MG. Decentralized federated learning: fundamentals state of the art frameworks trends and challenges. IEEE Commun Surv Tutor. 2023 Sep 15;25(6):2983-3013. doi: 10.1109/COMST.2023.3315746.
Kalusivalingam AK, Sharma A, Patel N, Singh V. Enhancing drug discovery and repurposing through transformer models and reinforcement learning algorithms. Int J Ai ML. 2021 Feb 15;2(3).
Kumar G, Yadav S, Mukherjee A, Hassija V, Guizani M. Recent advances in quantum computing for drug discovery and development. IEEE Access. 2024 Mar 11. doi: 10.1109/ACCESS.2024.3376408.
Pei T, Wang H, Chen W, Wang S, Pan D. Photovoltaic array fault detection based on a new model of series equivalent resistance. Phys Scr. 2024;99(9). doi: 10.1088/1402-4896/ad6fe1.
Prabhod KJ. Leveraging generative AI for personalized medicine: applications in drug discovery and development. J AI Assist Sci Discov. 2023 Apr 19;3(1):392-434.
Cumming JG, Davis AM, Muresan S, Haeberlein M, Chen H. Chemical predictive modelling to improve compound quality. Nat Rev Drug Discov. 2013 Dec;12(12):948-62. doi: 10.1038/nrd4128, PMID 24287782.
Kaswan KS, Gaur L, Dhatterwal JS, Kumar R. AI based natural language processing for the generation of meaningful information electronic health record (EHR) data. In: Advanced AI techniques and applications in bioinformatics. CRC Press; 2021 Oct 17. p. 41-86. doi: 10.1201/9781003126164-3.
Mitta NR. Application of AI-driven natural language processing in biomedical literature mining: developing deep learning models for automated knowledge extraction hypothesis generation and drug discovery insights. Afr J Artif Intell Sustain Dev. 2023 Oct 9;3(2):361-97.
Kolluri S, Lin J, Liu R, Zhang Y, Zhang W. Machine learning and artificial intelligence in pharmaceutical research and development: a review. AAPS J. 2022 Feb;24(1):19. doi: 10.1208/s12248-021-00644-3, PMID 34984579.
Garg HK. Integration of AI ML and blockchain technology: transforming codes into life. IEHE The Quest. 2023 Jun;2(1):5-18. doi: 10.5281/zenodo.13885489.
Quazi S. Artificial intelligence and machine learning in precision and genomic medicine. Med Oncol. 2022 Jun 15;39(8):120. doi: 10.1007/s12032-022-01711-1, PMID 35704152.
LI Q, Lei Y, Zhang P, Liu Y, LU Q, Chang C. Future challenges and prospects for personalized epigenetics. In: Pers epigenetics. Amsterdam: Elsevier; 2024 Jan 1. p. 721-44. doi: 10.1016/B978-0-443-23802-4.00019-3.
LI Q, Lei Y, Zhang P, Liu Y, LU Q, Chang C. Future challenges and prospects for personalized epigenetics. In: pers epigenetics. Amsterdam: Elsevier; 2024 Jan 1. p. 721-44. doi: 10.1016/B978-0-443-23802-4.00019-3.
Bhambure R, Kumar K, Rathore AS. High throughput process development for biopharmaceutical drug substances. Trends Biotechnol. 2011 Mar 1;29(3):127-35. doi: 10.1016/j.tibtech.2010.12.001, PMID 21255855.
Maharjan R, Lee JC, Lee K, Han HK, Kim KH, Jeong SH. Recent trends and perspectives of artificial intelligence-based machine learning from discovery to manufacturing in the biopharmaceutical industry. J Pharm Investig. 2023 Nov;53(6):803-26. doi: 10.1007/s40005-023-00637-8.
Dara M, Dianatpour M, Azarpira N, Omidifar N. Convergence of CRISPR and artificial intelligence: a paradigm shift in biotechnology. Human Gene. 2024 May 22;41:201297. doi: 10.1016/j.humgen.2024.201297.
Omidian H. Synergizing blockchain and artificial intelligence to enhance healthcare. Drug Discov Today. 2024 Jul 19;29(9):104111. doi: 10.1016/j.drudis.2024.104111, PMID 39034026.
Haleem A, Javaid M, Singh RP, Suman R, Rab S. Blockchain technology applications in healthcare: an overview. Int J Intell Netw. 2021 Jan 1;2:130-9. doi: 10.1016/j.ijin.2021.09.005.
Harshini CS, Murgai A, Manju KV, Paranjpye R, Jain K, Hati M. Integrating artificial intelligence with blockchain: a holistic examination of their combined effects on business performance across various sectors. Libr Prog. 2024 Oct 29;44(3):18587-96.
Tyagi AK, Editor. Privacy preservation of genomic and medical data. John Wiley & Sons; 2023 Nov 16.
Singh B, Kaunert C. Blockchain framework for precision medicine, clinical trials, and genomic biomarkers discovery: focuses on monitoring and managing data in health dimensions. In: Jermsittiparsert K, Marzo RR, editors. AI Technologies and Advancements for Psychological Well-Being and Healthcare. IGI Global; 2024. p. 255-88. doi: 10.4018/979-8-3693-9158-7.ch010.
Serrano DR, Luciano FC, Anaya BJ, Ongoren B, Kara A, Molina G. Artificial intelligence (AI) applications in drug discovery and drug delivery: revolutionizing personalized medicine. Pharmaceutics. 2024 Oct 14;16(10):1328. doi: 10.3390/pharmaceutics16101328, PMID 39458657.
Harrer S, Menard J, Rivers M, Green DV, Karpiak J, Jeliazkov JR. Artificial intelligence drives the digital transformation of pharma. In: Artificial intelligence in clinical practice. Elsevier; 2024 Jan 1. p. 345-72. doi: 10.1016/B978-0-443-15688-5.00049-8.
Tien JM. Internet of things real-time decision making and artificial intelligence. Ann Data Sci. 2017 Jun;4(2):149-78. doi: 10.1007/s40745-017-0112-5.
Subramanian M, Wojtusciszyn A, Favre L, Boughorbel S, Shan J, Letaief KB. Precision medicine in the era of artificial intelligence: implications in chronic disease management. J Transl Med. 2020 Dec;18(1):472. doi: 10.1186/s12967-020-02658-5, PMID 33298113.
Jakka S, Rossbach M. An economic perspective on personalized medicine. HUGO J. 2013 Dec;7(1):1-6. doi: 10.1186/1877-6566-7-1.
Vatansever S, Schlessinger A, Wacker D, Kaniskan HU, Jin J, Zhou MM. Artificial intelligence and machine learning aided drug discovery in central nervous system diseases: state of the arts and future directions. Med Res Rev. 2021 May;41(3):1427-73. doi: 10.1002/med.21764, PMID 33295676.
Chowdhury A, Kunjiappan S, Panneerselvam T, Somasundaram B, Bhattacharjee C. Nanotechnology and nanocarrier based approaches on the treatment of degenerative diseases. Int Nano Lett. 2017 Jun;7(2):91-122. doi: 10.1007/s40089-017-0208-0.
Petrova N. AI driven drug repurposing for novel therapeutic applications: utilizes AI algorithms to identify existing drugs with potential therapeutic applications in new disease areas. J Artif Intell Res Appl. 2024 Jun 7;4(1):182-90.
Jeyaraman N, Jeyaraman M, Yadav S, Ramasubramanian S, Balaji S. Revolutionizing healthcare: the emerging role of quantum computing in enhancing medical technology and treatment. Cureus. 2024 Aug 22;16(8):e67486. doi: 10.7759/cureus.67486, PMID 39310567.
Sharma P. Quantum computing in drug design: enhancing precision and efficiency in pharmaceutical development. Sage Sci Rev Appl Mach Learn. 2024 Jan 8;7(1):1-9.
Published
How to Cite
Issue
Section
Copyright (c) 2025 P. JASMINE, ARWA IBRAHIM, S. SIDDIQ, A. DHANURSHRA, M. NIRMALA, S. SHAKIR BASHA

This work is licensed under a Creative Commons Attribution 4.0 International License.