APPLICATION OF INHALATION THERAPEUTICS FOR LUNG CANCER TREATMENT: AN UPDATED REVIEW

Authors

  • PADIYAR NEHA Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Prem Nagar, Dehradun-248007, India
  • BISHT TANUJA School of Pharmaceutical Sciences, Shri Guru Ram Rai University, Dehradun, Uttarakhand, India
  • TYAGI YOGITA Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Prem Nagar, Dehradun-248007, India
  • JHAKMOLA VIKAS Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Prem Nagar, Dehradun-248007, India https://orcid.org/0000-0003-0117-1701

DOI:

https://doi.org/10.22159/ijap.2025v17i4.53291

Keywords:

Lung cancer, Inhalation, Barriers, Application

Abstract

Non-communicable Disease (NCDs) are the cause of around 71% of the total deaths globally. Lung cancer is one of the most common and serious malignancies throughout the world. According to the World Health Organization (WHO), lung cancer accounts for 2.2 million new cases annually, representing 11.7% of all cancer cases and 1.8 million deaths, representing approximately one-fifth of all cancer deaths, significantly more than those of breast cancer. The inhalational route for the delivery of drugs has received much attention in recent decades. This route can potentially increase and maintain drug concentration at the site of action. Targeting the chemotherapeutic agent leads to a decrease in dose and further decreases the systemic side effects. The pulmonary route also aids in reducing the drug dose variability due to its passage through the gastric environment. In this study, we have discussed various chemotherapeutic agents that exhibited better results when administered as micro-nanoparticles through an inhalational route. However, the delivery of drugs through inhalation also faces some challenges. The article reviewed all the barriers to inhalational therapy and the strategies to overcome these barriers.

References

Alduais Y, Zhang H, Fan F, Chen J, Chen B. Non-small cell lung cancer (NSCLC): a review of risk factors diagnosis and treatment. Medicine (US). 2023 Feb;102(8):e32899. doi: 10.1097/MD.0000000000032899, PMID 36827002.

Amicizia D, Piazza MF, Marchini F, Astengo M, Grammatico F, Battaglini A. Systematic review of lung cancer screening: advancements and strategies for implementation. Healthcare (Basel). 2023 Jul;11(14):2085. doi: 10.3390/healthcare11142085, PMID 37510525.

Laguna JC, Garcia Pardo M, Alessi J, Barrios C, Singh N, Al Shamsi HO. Geographic differences in lung cancer: focus on carcinogens genetic predisposition and molecular epidemiology. Ther Adv Med Oncol. 2024;16:17588359241231260. doi: 10.1177/17588359241231260, PMID 38455708.

Deshpand R, Chandra M, Rauthan A. Evolving trends in lung cancer: epidemiology diagnosis and management. Indian J Cancer. 2022;59(5) Suppl:S90-S105. doi: 10.4103/ijc.IJC_52_21, PMID 35343194.

Asmin PK, Nusrath F, Divakar DD. Occurrence and distribution of cancers with emphasis upon oral cancers in registered oncology institutes of South India a retrospective study. Indian J Community Med. 2024;49(1):120-30. doi: 10.4103/ijcm.ijcm_106_23, PMID 38425965.

Round S. Tobacco Survey India; 2016-2017.

National Tobacco Control Programme. Available from: https://ntcp.mohfw.gov.in. [Last accessed on 09 Jul 2025].

Singh N, Agrawal S, Jiwnani S, Khosla D, Malik PS, Mohan A. Lung cancer in India. J Thorac Oncol. 2021 Aug;16(8):1250-66. doi: 10.1016/j.jtho.2021.02.004, PMID 34304854.

Sathishkumar K, Chaturvedi M, Das P, Stephen S, Mathur P. Cancer incidence estimates for 2022 and projection for 2025: result from National Cancer Registry Programme, India. Indian J Med Res. 2022 Oct;156(4-5):598-607. doi: 10.4103/ijmr.ijmr_1821_22.

Kulothungan V, Sathishkumar K, Leburu S, Ramamoorthy T, Stephen S, Basavarajappa D. Burden of cancers in India estimates of cancer crude incidence YLLs YLDs and DALYs for 2021 and 2025 based on National Cancer Registry Program. BMC Cancer. 2022;22(1):527. doi: 10.1186/s12885-022-09578-1, PMID 35546232.

Wauthoz N, Rosiere R, Amighi K. Inhaled cytotoxic chemotherapy: clinical challenges recent developments and future prospects. Expert Opin Drug Deliv. 2021 Mar;18(3):333-54. doi: 10.1080/17425247.2021.1829590, PMID 33050733.

KT, GA, SH, JA. Siegel RL. Cancer Stat; 2025.

Solta A, Ernhofer B, Boettiger K, Megyesfalvi Z, Heeke S, Hoda MA. Small cells big issues: biological implications and preclinical advancements in small cell lung cancer. Mol Cancer. 2024;23(1):41. doi: 10.1186/s12943-024-01953-9, PMID 38395864.

Patil M, Patel P. Liposomal dry powder inhaler: novel pulmonary targeted drug delivery system for the treatment of lung cancer. Int J Appl Pharm. 2023;15(1):1-12. doi: 10.22159/ijap.2023v15i1.46611.

Drilon A, Rekhtman N, Ladanyi M, Paik P. Squamous cell carcinomas of the lung: emerging biology controversies and the promise of targeted therapy. Lancet Oncol. 2012 Oct;13(10):e418-26. doi: 10.1016/S1470-2045(12)70291-7, PMID 23026827.

Travis WD. Pathology of lung cancer. Clin Chest Med. 2011 Dec;32(4):669-92. doi: 10.1016/j.ccm.2011.08.005, PMID 22054879.

Shochat SJ, Sandoval JA. Tumors of the lung. In: Puri P. editor. Pediatric surgery: general pediatric surgery tumors trauma and transplantation. Berlin Heidelberg: Springer Berlin Heidelberg; 2021. p. 1031-45. doi: 10.1007/978-3-662-43559-5_205.

Kumar M, Jha A, Madhu, Mishra B. Targeted drug nanocrystals for pulmonary delivery: a potential strategy for lung cancer therapy. Expert Opin Drug Deliv. 2020;17(10):1459-72. doi: 10.1080/17425247.2020.1798401, PMID 32684002.

Ahmad J, Akhter S, Rizwanullah M, Amin S, Rahman M, Ahmad MZ. Nanotechnology-based inhalation treatments for lung cancer: state of the art. Nanotechnol Sci Appl. 2015 Nov 19;8:55-66. doi: 10.2147/NSA.S49052, PMID 26640374.

Sharma P, Mehta M, Dhanjal DS, Kaur S, Gupta G, Singh H. Emerging trends in the novel drug delivery approaches for the treatment of lung cancer. Chem Biol Interact. 2019 Aug;309:108720. doi: 10.1016/j.cbi.2019.06.033, PMID 31226287.

Ara N, Hafeez A. Nanocarrier mediated drug delivery via inhalational route for lung cancer therapy: a systematic and updated review. AAPS PharmSciTech. 2024;25(3):47. doi: 10.1208/s12249-024-02758-1, PMID 38424367.

Zhang S, LI R, Jiang T, Gao Y, Zhong K, Cheng H. Inhalable nanomedicine for lung cancer treatment. Smart Materials in Medicine. 2024;5(2):261-80. doi: 10.1016/j.smaim.2024.04.001.

Nainwal N, Sharma Y, Jakhmola V. Dry powder inhalers of antitubercular drugs. Tuberculosis (Edinb). 2022 Jun;135:102228. doi: 10.1016/j.tube.2022.102228, PMID 35779497.

Zarogoulidis P, Chatzaki E, Porpodis K, Domvri K, Hohenforst Schmidt W, Goldberg EP. Inhaled chemotherapy in lung cancer: future concept of nanomedicine. Int J Nanomedicine. 2012;7:1551-72. doi: 10.2147/IJN.S29997, PMID 22619512.

Alyami M, Hubner M, Grass F, Bakrin N, Villeneuve L, Laplace N. Pressurised intraperitoneal aerosol chemotherapy: rationale evidence and potential indications. Lancet Oncol. 2019 Jul;20(7):e368-77. doi: 10.1016/S1470-2045(19)30318-3, PMID 31267971.

Storti C, Noci LE V, Sommariva M, Tagliabue E, Balsari A, Sfondrini L. Aerosol delivery in the treatment of lung cancer. Curr Cancer Drug Targets. 2015;15(7):604-12. doi: 10.2174/1568009615666150602143751, PMID 26033086.

Al Khatib AO, El Tanani M, Al Obaidi H. Inhaled medicines for targeting non small cell lung cancer. Pharmaceutics. 2023;15(12):2777. doi: 10.3390/pharmaceutics15122777, PMID 38140117.

Xie L, Xie D, Du Z, Xue S, Wang K, Yu X. A novel therapeutic outlook: classification applications and challenges of inhalable micron/nanoparticle drug delivery systems in lung cancer. Int J Oncol. 2024;64(4):38. doi: 10.3892/ijo.2024.5626, PMID 38391039.

Liu Y, Crowe WN, Wang L, Petty WJ, Habib AA, Zhao D. Aerosolized immunotherapeutic nanoparticle inhalation potentiates PD-L1 blockade for locally advanced lung cancer. Nano Res. 2023;16(4):5300-10. doi: 10.1007/s12274-022-5205-6, PMID 37228440.

Mangal S, Gao W, LI T, Zhou QT. Pulmonary delivery of nanoparticle chemotherapy for the treatment of lung cancers: challenges and opportunities. Acta Pharmacol Sin. 2017;38(6):782-97. doi: 10.1038/aps.2017.34, PMID 28504252.

Amr Hefnawy, Alaa Ibrahim, Mahmoud M Abdullah, Moustafa M Abdelaziz, Islam A Khalil. Inhaled delivery of immunotherapy for treatment of lung cancer. Nanomedicine in Cancer Immunotherapy. 2024 Jan;403-39.

Nayek S, Venkatachalam A, Choudhury S. Recent nanocochleate drug delivery system for cancer treatment: a review. Int J Curr Pharm Res. 2019 Nov;11(6):28-32. doi: 10.22159/ijcpr.2019v11i6.36359.

Gressler S, Hipfinger C, Part F, Pavlicek A, Zafiu C, Giese B. A systematic review of nanocarriers used in medicine and beyond definition and categorization framework. J of Nanobiotechnology. 2025;23(1):90. doi: 10.1186/s12951-025-03113-7.

Rosiere R, Amighi K, Wauthoz N. Nanomedicine based inhalation treatments for lung cancer. In: Nanotechnology based targeted drug delivery systems for lung cancer. Amsterdam: Elsevier; 2019. p. 249-68. doi: 10.1016/B978-0-12-815720-6.00010-1.

Gautam RK, Mittal P, Goyal R, Dua K, Mishra DK, Sharma S. Nanomedicine: innovative strategies and recent advances in targeted cancer therapy. Curr Med Chem. 2024;31(28):4479-94. doi: 10.2174/0109298673258987231004092334, PMID 37828674.

Abdellatif MM, Ahmed SM, El Nabarawi MA, Teaima M. Nano delivery systems for enhancing oral bioavailability of drugs. Int J App Pharm. 2023;15(1):13-9. doi: 10.22159/ijap.2023v15i1.46758.

Mahar R, Chakraborty A, Nainwal N. Formulation of resveratrol loaded polycaprolactone inhalable microspheres using Tween 80 as an emulsifier: factorial design and optimization. AAPS PharmSciTech. 2023;24(5):131. doi: 10.1208/s12249-023-02587-8, PMID 37291478.

Mahar R, Chakraborty A, Nainwal N, Bahuguna R, Sajwan M, Jakhmola V. Application of PLGA as a biodegradable and biocompatible polymer for pulmonary delivery of drugs. AAPS PharmSciTech. 2023;24(1):39. doi: 10.1208/s12249-023-02502-1, PMID 36653547.

Lowenthal RM, Eaton K. Toxicity of chemotherapy. Hematol Oncol Clin North Am. 1996 Aug;10(4):967-90. doi: 10.1016/S0889-8588(05)70378-6, PMID 8811311.

Bezemer GF. Particle deposition and clearance from the respiratory tract; 2009. Available from: https://studenttheses.uu.nl/handle/20.500.12932/3433. [Last accessed on 23 Jun 2024].

Kiffmeyer T, Hadtstein C. Handling of chemotherapeutic drugs in the OR: hazards and safety considerations. In: Ceelen WP, editor. Peritoneal carcinomatosis: a multidisciplinary approach. Boston: Springer US; 2007. p. 275-90. doi: 10.1007/978-0-387-48993-3_17.

Newman SP. Drug delivery to the lungs: challenges and opportunities. Ther Deliv. 2017 Jul;8(8):647-61. doi: 10.4155/TDE-2017-0037, PMID 28730933.

Herminghaus A, Kozlov AV, Szabo A, Hantos Z, Gylstorff S, Kuebart A. A barrier to defend models of pulmonary barrier to study acute inflammatory diseases. Front Immunol. 2022 Jul;13:895100. doi: 10.3389/FIMMU.2022.895100, PMID 35874776.

Kageyama T, Ito T, Tanaka S, Nakajima H. Physiological and immunological barriers in the lung. Semin Immunopathol. 2024;45(4-6):533-47. doi: 10.1007/S00281-024-01003-Y, PMID 38451292.

Frohlich E. Toxicity of orally inhaled drug formulations at the alveolar barrier: parameters for initial biological screening. Drug Deliv. 2017;24(1):891-905. doi: 10.1080/10717544.2017.1333172, PMID 28574335.

DH Bowden. The alveolar macrophage and its role in toxicology. CRC critical reviews in toxicology. 1973 Jun;2(1):95-124. doi: 10.1080/10408447309163832, PMID 4353537.

Bowden DH. The alveolar macrophage and its role in toxicology. CRC Crit Rev Toxicol. 1973;2(1):95-124. doi: 10.1080/10408447309163832, PMID 4353537.

Rau JL. The inhalation of drugs: advantages and problems. Respir Care. 2005;50(3):367-82. PMID 15737247.

Sharma Y, Mahar R, Chakraborty A, Nainwal N. Optimizing the formulation variables for encapsulation of linezolid into polycaprolactone inhalable microspheres using double emulsion solvent evaporation. Tuberculosis (Edinb). 2023 Dec;143:102417. doi: 10.1016/j.tube.2023.102417, PMID 37827017.

Thakur AK, Kaundle B, Singh I. Mucoadhesive drug delivery systems in respiratory diseases. In: Targeting chronic inflammatory lung diseases using advanced drug delivery systems. Amsterdam: Elsevier; 2020. p. 475-91. doi: 10.1016/B978-0-12-820658-4.00022-4.

Dondulkar A, Akojwar N, Katta C, Khatri DK, Mehra NK, Singh SB. Inhalable polymeric micro and nano immunoadjuvants for developing therapeutic vaccines in the treatment of non-small cell lung cancer. Curr Pharm Des. 2022;28(5):395-409. doi: 10.2174/1381612827666211104155604, PMID 34736378.

Lee WH, Loo CY, Traini D, Young PM. Nano and micro based inhaled drug delivery systems for targeting alveolar macrophages. Expert Opin Drug Deliv. 2015 Jun;12(6):1009-26. doi: 10.1517/17425247.2015.1039509, PMID 25912721.

Skupin Mrugalska P. Liposome based drug delivery for lung cancer. In: nanotechnology based targeted drug delivery systems for lung cancer. Amsterdam: Elsevier; 2019. p. 123-60. doi: 10.1016/B978-0-12-815720-6.00006-X.

Roa WH, Azarmi S, Al Hallak MH, Finlay WH, Magliocco AM, Lobenberg R. Inhalable nanoparticles a non invasive approach to treat lung cancer in a mouse model. J Control Release. 2011 Feb;150(1):49-55. doi: 10.1016/j.jconrel.2010.10.035, PMID 21059378.

Azarmi S, Tao X, Chen H, Wang Z, Finlay WH, Lobenberg R. Formulation and cytotoxicity of doxorubicin nanoparticles carried by dry powder aerosol particles. Int J Pharm. 2006;319(1-2):155-61. doi: 10.1016/j.ijpharm.2006.03.052, PMID 16713150.

Kim I, Byeon HJ, Kim TH, Lee ES, OH KT, Shin BS. Doxorubicin loaded highly porous large PLGA microparticles as a sustained release inhalation system for the treatment of metastatic lung cancer. Biomaterials. 2012 Aug;33(22):5574-83. doi: 10.1016/j.biomaterials.2012.04.018, PMID 22579235.

Choi SH, Byeon HJ, Choi JS, Thao L, Kim I, Lee ES. Inhalable self-assembled albumin nanoparticles for treating drug resistant lung cancer. J Control Release. 2015 Jan;197:199-207. doi: 10.1016/j.jconrel.2014.11.008, PMID 25445703.

Nozohouri S, Salehi R, Ghanbarzadeh S, Adibkia K, Hamishehkar H. A multilayer hollow nanocarrier for pulmonary co-drug delivery of methotrexate and doxorubicin in the form of dry powder inhalation formulation. Mater Sci Eng C. 2019 Jun;99:752-61. doi: 10.1016/j.msec.2019.02.009.

Kaminskas LM, MC Leod VM, Ryan GM, Kelly BD, Haynes JM, Williamson M. Pulmonary administration of a doxorubicin conjugated dendrimer enhances drug exposure to lung metastases and improves cancer therapy. J Control Release. 2014 Jun;183(1):18-26. doi: 10.1016/j.jconrel.2014.03.012, PMID 24637466.

Gong HY, Chen YG, YU XS, Xiao H, Xiao JP, Wang Y. Co-delivery of doxorubicin and afatinib with pH-responsive polymeric nanovesicle for enhanced lung cancer therapy. Chin J Polym Sci. 2019 Dec;37(12):1224-33. doi: 10.1007/s10118-019-2272-6.

Taratula O, Garbuzenko OB, Chen AM, Minko T. Innovative strategy for treatment of lung cancer: targeted nanotechnology based inhalation co-delivery of anticancer drugs and siRNA. J Drug Target. 2011 Dec;19(10):900-14. doi: 10.3109/1061186X.2011.622404, PMID 21981718.

Kiran Jyoti, Ravi Shankar Pandey, Preeti Kush, Dinesh Kaushik, Upendra Kumar Jain, Jitender Madan. Inhalable bioresponsive chitosan microspheres of doxorubicin and soluble curcumin augmented drug delivery in lung cancer cells. Int J Biol Macromol. 2017 May:98:50-8. doi: 10.1016/j.ijbiomac.2017.01.109.

Taratula O, Kuzmov A, Shah M, Garbuzenko OB, Minko T. Nanostructured lipid carriers as multifunctional nanomedicine platform for pulmonary co-delivery of anticancer drugs and siRNA. J Control Release. 2013 Nov;171(3):349-57. doi: 10.1016/j.jconrel.2013.04.018, PMID 23648833.

Ghosh S, Lalani R, Maiti K, Banerjee S, Bhatt H, Bobde YS. Synergistic co-loading of vincristine improved chemotherapeutic potential of pegylated liposomal doxorubicin against triple negative breast cancer and non-small cell lung cancer. Nanomedicine. 2021 Jan;31:102320. doi: 10.1016/j.nano.2020.102320, PMID 33075540.

Saket Jitendre Sinha, Bhupinder Kumar, Chandra Prakash Prasad, Shyam Singh Chauhan, Manish Kumar. Emerging research and future directions on doxorubicin: a snapshot. Asian Pac J Cancer Prev. 2025 Jan 1;26(1):5-15. doi: 10.31557/APJCP.2025.26.1.5.

Feng T, Tian H, Xu C, Lin L, Xie Z, Lam MH. Synergistic co-delivery of doxorubicin and paclitaxel by porous PLGA microspheres for pulmonary inhalation treatment. Eur J Pharm Biopharm. 2014 Nov;88(3):1086-93. doi: 10.1016/j.ejpb.2014.09.012, PMID 25305583.

Abd Elwakil MM, Mabrouk MT, Helmy MW, Abdelfattah EA, Khiste SK, Elkhodairy KA. Inhalable lactoferrin chondroitin nanocomposites for combined delivery of doxorubicin and ellagic acid to lung carcinoma. Nanomedicine (Lond). 2018 Aug;13(16):2015-35. doi: 10.2217/nnm-2018-0039, PMID 30191764.

Long JT, Cheang TY, Zhuo SY, Zeng RF, Dai QS, LI HP. Anticancer drug loaded multifunctional nanoparticles to enhance the chemotherapeutic efficacy in lung cancer metastasis. J Nanobiotechnology. 2014;12:37. doi: 10.1186/s12951-014-0037-5, PMID 25266303.

Kim I, Byeon HJ, Kim TH, Lee ES, Oh KT, Shin BS. Doxorubicin loaded porous PLGA microparticles with surface attached TRAIL for the inhalation treatment of metastatic lung cancer. Biomaterials. 2013 Sep;34(27):6444-53. doi: 10.1016/j.biomaterials.2013.05.018, PMID 23755831.

Xu C, Wang Y, Guo Z, Chen J, Lin L, WU J. Pulmonary delivery by exploiting doxorubicin and cisplatin co-loaded nanoparticles for metastatic lung cancer therapy. J Control Release. 2019 Feb;295:153-63. doi: 10.1016/j.jconrel.2018.12.013, PMID 30586598.

Feng T, Tian H, Xu C, Lin L, Xie Z, Lam MH. Synergistic co-delivery of doxorubicin and paclitaxel by porous PLGA microspheres for pulmonary inhalation treatment. Eur J Pharm Biopharm. 2014;88(3):1086-93. doi: 10.1016/j.ejpb.2014.09.012, PMID 25305583.

Balaji. Pharmacotherapy of non-small cell lung cancer. Asian J Pharm Chem Res Revised Accepted; 2017.

Tseng YH, Tran TT, Tsai Chang J, Huang YT, Nguyen AT, Chang IY. Utilizing TP53 hotspot mutations as effective predictors of gemcitabine treatment outcome in non small cell lung cancer. Cell Death Discov. 2025;11(1):26. doi: 10.1038/s41420-025-02300-7, PMID 39870629.

Youngren Ortiz SR, Hill DB, Hoffmann PR, Morris KR, Barrett EG, Forest MG. Development of optimized inhalable gemcitabine loaded gelatin nanocarriers for lung cancer. J Aerosol Med Pulm Drug Deliv. 2017 Oct;30(5):299-321. doi: 10.1089/JAMP.2015.1286, PMID 28277892.

Menon JU, Kuriakose A, Iyer R, Hernandez E, Gandee L, Zhang S. Dual drug containing core shell nanoparticles for lung cancer therapy. Sci Rep. 2017;7(1):13249. doi: 10.1038/s41598-017-13320-4, PMID 29038584.

Mohamad Saimi NI, Salim N, Ahmad N, Abdulmalek E, Abdul Rahman MB. Aerosolized niosome formulation containing gemcitabine and cisplatin for lung cancer treatment: optimization characterization and in vitro evaluation. Pharmaceutics. 2021;13(1):59. doi: 10.3390/pharmaceutics13010059, PMID 33466428.

Gandhi M, Pandya T, Gandhi R, Patel S, Mashru R, Misra A. Inhalable liposomal dry powder of gemcitabine HCL: formulation in vitro characterization and in vivo studies. Int J Pharm. 2015 Dec;496(2):886-95. doi: 10.1016/j.ijpharm.2015.10.020, PMID 26453787.

Schwarz Y, Merimsky O, Starr A. Non-small cell lung cancer treatment by inhalation of erbitux and gemcitabine in murine model. Eur Respir J. 2011;38: Suppl 55.

Rajoriya V, Gupta R, Vengurlekar S, Jain SK. Folate conjugated nano lipid construct of paclitaxel for site specific lung squamous carcinoma targeting. Int J Pharm. 2025 Mar;672:125312. doi: 10.1016/j.ijpharm.2025.125312, PMID 39894086.

Muralidharan P, Malapit M, Mallory E, Hayes D, Mansour HM. Inhalable nanoparticulate powders for respiratory delivery. Nanomedicine. 2015;11(5):1189-99. doi: 10.1016/j.nano.2015.01.007, PMID 25659645.

Yang Y, Huang Z, LI J, Mo Z, Huang Y, Ma C. PLGA porous microspheres dry powders for codelivery of afatinib loaded solid lipid nanoparticles and paclitaxel: novel therapy for EGFR tyrosine kinase inhibitors resistant nonsmall cell lung cancer. Adv Healthc Mater. 2019 Dec;8(23):e1900965. doi: 10.1002/adhm.201900965, PMID 31664795.

Guzman EA, Sun Q, Meenach SA. Development and evaluation of paclitaxel-loaded aerosol nanocomposite microparticles and their efficacy against air grown lung cancer tumor spheroids. ACS Biomater Sci Eng. 2019 Dec;5(12):6570-80. doi: 10.1021/acsbiomaterials.9b00947, PMID 32133390.

Rezazadeh M, Davatsaz Z, Emami J, Hasanzadeh F, Jahanian Najafabadi A. Preparation and characterization of spray dried inhalable powders containing polymeric micelles for pulmonary delivery of paclitaxel in lung cancer. J Pharm Pharm Sci. 2018;21(1s):200s-14s. doi: 10.18433/jpps30048, PMID 30321135.

Lee WH, Loo CY, Traini D, Young PM. Development and evaluation of paclitaxel and curcumin dry powder for inhalation lung cancer treatment. Pharmaceutics. 2020;13(1):9. doi: 10.3390/pharmaceutics13010009, PMID 33375181.

Reczynska K, Marchwica P, Khanal D, Borowik T, Langner M, Pamula E. Stimuli sensitive fatty acid based microparticles for the treatment of lung cancer. Mater Sci Eng C Mater Biol Appl. 2020 Jun;111:110801. doi: 10.1016/j.msec.2020.110801, PMID 32279754.

Rosiere R, Van Woensel M, Mathieu V, Langer I, Mathivet T, Vermeersch M. Development and evaluation of well tolerated and tumor penetrating polymeric micelle based dry powders for inhaled anti-cancer chemotherapy. Int J Pharm. 2016;501(1-2):148-59. doi: 10.1016/j.ijpharm.2016.01.073, PMID 26850313.

LI Y, Hou H, Zhang P, Zhang Z. Co-delivery of doxorubicin and paclitaxel by reduction/pH dual responsive nanocarriers for osteosarcoma therapy. Drug Deliv. 2020 Jan;27(1):1044-53. doi: 10.1080/10717544.2020.1785049, PMID 32633576.

Meenach SA, Anderson KW, Hilt JZ, MC Garry RC, Mansour HM. High performing dry powder inhalers of paclitaxel DPPC/DPPG lung surfactant mimic multifunctional particles in lung cancer: physicochemical characterization in vitro aerosol dispersion and cellular studies. AAPS PharmSciTech. 2014 Nov;15(6):1574-87. doi: 10.1208/s12249-014-0182-z, PMID 25139763.

Dalek P, Borowik T, Reczynska K, Pamula E, Chrzanowski W, Langner M. Evaluation of the in vitro stability of stimuli sensitive fatty acid based microparticles for the treatment of lung cancer. Langmuir. 2020 Sep;36(37):11138-46. doi: 10.1021/acs.langmuir.0c02141, PMID 32856922.

SM, Steffi PF. Curcumin a potent anticarcinogenic polyphenol ac a review. Asian J Pharm Clin Res. 2014 May;7(7):1-8.

Papavassiliou KA, Sofianidi AA, Gogou VA, Papavassiliou AG. The prospects of curcumin in non-small cell lung cancer therapeutics. Cancers (Basel). 2025;17(3):438. doi: 10.3390/cancers17030438, PMID 39941806.

Shah J, Patel S, Bhairy S, Hirlekar R. Formulation optimization characterization and in vitro anti-cancer activity of curcumin loaded nanostructured lipid carriers. Int J Curr Pharm Res. 2022 Jan;14(1):31-43. doi: 10.22159/ijcpr.2022v14i1.44110.

El Sherbiny IM, Smyth HD. Controlled release pulmonary administration of curcumin using swellable biocompatible microparticles. Mol Pharm. 2012;9(2):269-80. doi: 10.1021/mp200351y, PMID 22136259.

WU Q, OU H, Shang Y, Zhang X, WU J, Fan F. Nanoscale formulations: incorporating curcumin into combination strategies for the treatment of lung cancer. Drug Des Devel Ther. 2021 Jun 21;15:2695-709. doi: 10.2147/DDDT.S311107, PMID 34188448.

Kurniawansyah F, Duong HT, Luu TD, Mammucari R, Vittorio O, Boyer C. Inhalable curcumin formulations: micronization and bioassay. Chem Eng J. 2015 Nov;279:799-808. doi: 10.1016/j.cej.2015.05.087.

Su W, Wei T, Lu M, Meng Z, Chen X, Jing J. Treatment of metastatic lung cancer via inhalation administration of curcumin composite particles based on mesoporous silica. Eur J Pharm Sci. 2019 Jun;134:246-55. doi: 10.1016/j.ejps.2019.04.025, PMID 31034984.

Jyoti K, Pandey RS, Madan J, Jain UK. Inhalable cationic niosomes of curcumin enhanced drug delivery and apoptosis in lung cancer cells. Indian J Pharm Educ Res. 2016 Apr;50(2):S21-31. doi: 10.5530/ijper.50.2.14.

Zhang T, Chen Y, Ge Y, HU Y, Li M, Jin Y. Inhalation treatment of primary lung cancer using liposomal curcumin dry powder inhalers. Acta Pharm Sin B. 2018 May;8(3):440-8. doi: 10.1016/j.apsb.2018.03.004, PMID 29881683.

Al Ayoub Y, Gopalan RC, Najafzadeh M, Mohammad MA, Anderson D, Paradkar A. Development and evaluation of nanoemulsion and microsuspension formulations of curcuminoids for lung delivery with a novel approach to understanding the aerosol performance of nanoparticles. Int J Pharm. 2019 Feb 25;557:254-63. doi: 10.1016/j.ijpharm.2018.12.042, PMID 30597263.

Lee WH. Formulation of curcumin nanoparticles for lung cancer therapy. Drug Delivery to the Lungs; 2023.

Baghdan E, Duse L, Schuer JJ, Pinnapireddy SR, Pourasghar M, Schafer J. Development of inhalable curcumin loaded nano in microparticles for bronchoscopic photodynamic therapy. Eur J Pharm Sci. 2019 Apr 30;132:63-71. doi: 10.1016/j.ejps.2019.02.025, PMID 30797026.

Lee WH, Loo CY, Ong HX, Traini D, Young PM, Rohanizadeh R. Synthesis and characterization of inhalable flavonoid nanoparticle for lung cancer cell targeting. J Biomed Nanotechnol. 2016 Feb;12(2):371-86. doi: 10.1166/jbn.2016.2162, PMID 27305771.

Rahman MB, Asmawi AA, Salim N, Abdmalek E, Masarudin MJ. Physicochemical and aerodynamical analysis of inhalable nanoemulsion system loaded with docetaxel and curcumin for lung cancer treatment via pulmonary route.

Levet V, Rosiere R, Merlos R, Fusaro L, Berger G, Amighi K. Development of controlled release cisplatin dry powders for inhalation against lung cancers. Int J Pharm. 2016 Dec;515(1-2):209-20. doi: 10.1016/j.ijpharm.2016.10.019, PMID 27737810.

Chraibi S, Rosiere R, Larbanoix L, Gerard P, Hennia I, Laurent S. The combination of an innovative dry powder for inhalation and a standard cisplatin-based chemotherapy in view of therapeutic intensification against lung tumours. Eur J Pharm Biopharm. 2021 Jul;164:93-104. doi: 10.1016/j.ejpb.2021.04.018, PMID 33957225.

Mohamad Saimi NI, Salim N, Ahmad N, Abdulmalek E, Abdul Rahman MB. Aerosolized niosome formulation containing gemcitabine and cisplatin for lung cancer treatment: optimization characterization and in vitro evaluation. Pharmaceutics. 2021;13(1):59. doi: 10.3390/pharmaceutics13010059, PMID 33466428.

Singh DJ, Lohade AA, Parmar JJ, Hegde DD, Soni P, Samad A. Development of chitosan based dry powder inhalation system of cisplatin for lung cancer. Indian J Pharm Sci. 2012;74(6):521-6. doi: 10.4103/0250-474X.110584, PMID 23798777.

Levet V, Merlos R, Rosiere R, Amighi K, Wauthoz N. Platinum pharmacokinetics in mice following inhalation of cisplatin dry powders with different release and lung retention properties. Int J Pharm. 2017 Jan;517(1-2):359-72. doi: 10.1016/j.ijpharm.2016.12.037, PMID 28007545.

Vikal A, Maurya R, Bhowmik S, Khare S, Raikwar S, Patel P. Resveratrol: a comprehensive review of its multifaceted health benefits mechanisms of action and potential therapeutic applications in chronic disease. Pharmacological Research Natural Products. 2024 Jun;3:100047. doi: 10.1016/j.prenap.2024.100047.

Wang X, Parvathaneni V, Shukla SK, Kulkarni NS, Muth A, Kunda NK. Inhalable resveratrol cyclodextrin complex loaded biodegradable nanoparticles for enhanced efficacy against non-small cell lung cancer. Int J Biol Macromol. 2020 Dec;164:638-50. doi: 10.1016/j.ijbiomac.2020.07.124, PMID 32693132.

Dimer FA, Ortiz M, Pohlmann AR, Guterres SS. Inhalable resveratrol microparticles produced by vibrational atomization spray drying for treating pulmonary arterial hypertension. J Drug Deliv Sci Technol. 2015 Oct;29:152-8. doi: 10.1016/j.jddst.2015.07.008.

Mali AJ, Rokade A, Kamble R, Pawar A, Bothiraja C. Resveratrol loaded microsponge as a novel biodegradable carrier for dry powder inhaler: a new strategy in lung delivery. BioNanoScience. 2021 Mar;11(1):32-43. doi: 10.1007/s12668-020-00800-7.

Salehi B, Mishra AP, Nigam M, Sener B, Kilic M, Sharifi Rad M. Resveratrol: a double edged sword in health benefits. Biomedicines. 2018;6(3):91. doi: 10.3390/biomedicines6030091, PMID 30205595.

Kuehl PJ, Tellez CS, Grimes MJ, March TH, Tessema M, Revelli DA. 5-azacytidine inhaled dry powder formulation profoundly improves pharmacokinetics and efficacy for lung cancer therapy through genome reprogramming. Br J Cancer. 2020;122(8):1194-204. doi: 10.1038/s41416-020-0765-2, PMID 32103148.

Parvathaneni V, Kulkarni NS, Chauhan G, Shukla SK, Elbatanony R, Patel B. Development of pharmaceutically scalable inhaled anti-cancer nanotherapy repurposing amodiaquine for non-small cell lung cancer (NSCLC). Mater Sci Eng C Mater Biol Appl. 2020 Oct;115:111139. doi: 10.1016/j.msec.2020.111139, PMID 32600728.

Mehendale P, Athawale R. Dry powder inhaler of a cytotoxic agent a new avenue as drug delivery for the lung cancer; 2020. Available from: https://papers.ssrn.com/abstract=3528249. [Last accessed on 04 Jul 2024].

Dehghan MH, Chishti N. Nano embedded microparticles based dry powder inhaler for lung cancer treatment. JRP. 2020;24(3):425-35. doi: 10.35333/jrp.2020.165.

Bakhtiary Z, Barar J, Aghanejad A, Saei AA, Nemati E, Ezzati Nazhad Dolatabadi J. Microparticles containing erlotinib loaded solid lipid nanoparticles for treatment of non-small cell lung cancer. Drug Dev Ind Pharm. 2017;43(8):1244-53. doi: 10.1080/03639045.2017.1310223, PMID 28323493.

Radhakrishnan D, Mohanan S, Choi G, Choy JH, Tiburcius S, Trinh HT. The emergence of nanoporous materials in lung cancer therapy. Sci Technol Adv Mater. 2022 Dec;23(1):225-74. doi: 10.1080/14686996.2022.2052181, PMID 35875329.

Satari N, Taymouri S, Varshosaz J, Rostami M, Mirian M. Preparation and evaluation of inhalable dry powder containing glucosamine conjugated gefitinib SLNs for lung cancer therapy. Drug Dev Ind Pharm. 2020;46(8):1265-77. doi: 10.1080/03639045.2020.1788063, PMID 32594775.

Wauthoz N, Deleuze P, Saumet A, Duret C, Kiss R, Amighi K. Temozolomide based dry powder formulations for lung tumor related inhalation treatment. Pharm Res. 2011 Apr;28(4):762-75. doi: 10.1007/s11095-010-0329-x, PMID 21116692.

Rosiere R, Gelbcke M, Mathieu V, Antwerpen Van P, Amighi K, Wauthoz N. New dry powders for inhalation containing temozolomide based nanomicelles for improved lung cancer therapy. Int J Oncol. 2015 Sep;47(3):1131-42. doi: 10.3892/ijo.2015.3092, PMID 26201404.

Shukla SK, Kulkarni NS, Farrales P, Kanabar DD, Parvathaneni V, Kunda NK. Sorafenib loaded inhalable polymeric nanocarriers against non-small cell lung cancer. Pharm Res. 2020;37(3):67. doi: 10.1007/s11095-020-02790-3, PMID 32166411.

Zhu L, LI M, Liu X, Jin Y. Drug loaded PLGA electrospraying porous microspheres for the local therapy of primary lung cancer via pulmonary delivery. ACS Omega. 2017 May;2(5):2273-9. doi: 10.1021/acsomega.7b00456, PMID 30023660.

Singh A, Bhatia S, Rana V. Inhalable nanostructures for lung cancer treatment: progress and challenges. Curr Nanomed. 2019;9(1):4-29. doi: 10.2174/2468187308666180307152049.

MM, LM, GY, YZ, TT, JY, G Zhang. Liposomal melatonin dry powder inhalers for the treatment of primary lun. Acta Pharm Sin. 2019;54(3):555-64.

Published

07-07-2025

How to Cite

NEHA, P., TANUJA, B., YOGITA, T., & VIKAS, J. (2025). APPLICATION OF INHALATION THERAPEUTICS FOR LUNG CANCER TREATMENT: AN UPDATED REVIEW. International Journal of Applied Pharmaceutics, 17(4), 77–90. https://doi.org/10.22159/ijap.2025v17i4.53291

Issue

Section

Review Article(s)

Similar Articles

<< < 5 6 7 8 9 > >> 

You may also start an advanced similarity search for this article.