PERMEABILITY ENHANCEMENT OF A BCS CLASS III DRUG THROUGH LIPID-BASED NANOPARTICLES: A QUALITY BY DESIGN APPROACH

Authors

  • MUGGU SANKARA BHAVANI Department of Pharmaceutics, Bharath Institute of Higher Education and Research, Chennai-600073, India https://orcid.org/0009-0003-6679-9943
  • SARAVANAN RAVINDRAN Department of Pharmaceutics, Faculty of Pharmacy, Bharath Institute of Higher Education and Research, Chennai-600073, India

DOI:

https://doi.org/10.22159/ijap.2025v17i3.53483

Keywords:

Metformin, Bioavailability, Permeability, Lipid-based nanoparticles, Quality by design

Abstract

Objective: Metformin belongs to class III of biopharmaceutical classification. Low bioavailability of 50 – 60% due to its poor permeability and high dose of 500-1000 mg are challenging to the dosage form development of Metformin. Hence, this work was planned to augment the permeability of Metformin so as to improve its oral bioavailability.

Methods: Metformin-loaded nanoparticles with lipids, surfactants and bile salts were prepared through double emulsion solvent evaporation technique. Quality by design approach was employed to optimize and develop the nanoparticles. The central composite design was adopted to design the experiment to prepare nanoparticles from several combinations at different concentrations of the lipids and surfactants. These nanoparticles were characterized for yield, entrapment efficiency, solubility and permeability. Impacts of the factors on the solubility change and permeability change were studied by design of experiments analysis.

Results: The nanoparticles from the optimized formulation were found to have a size of 262.1 nm with a polydispersity index of 0.352 after design of experiments analysis with statistical significance measured at p<0.05. Importantly, these optimized nanoparticles exhibited permeability of 2.137x10-5 cm/sec, which was 5-times higher when compared to pure Metformin.

Conclusion: These results concluded that the oral bioavailability would be improved through improved permeability from the lipid-based nanoparticles of Metformin.

References

Bidulka P, Lugo Palacios DG, Carroll O, O Neill S, Adler AI, Basu A. Comparative effectiveness of second-line oral antidiabetic treatments among people with type 2 diabetes mellitus: emulation of a target trial using routinely collected health data. BMJ. 2024 May 8;385:e077097. doi: 10.1136/bmj-2023-077097, PMID 38719492.

Metry M, Shu Y, Abrahamsson B, Cristofoletti R, Dressman JB, Groot DW. Biowaiver monographs for immediate release solid oral dosage forms: metformin hydrochloride. J Pharm Sci. 2021 Apr;110(4):1513-26. doi: 10.1016/j.xphs.2021.01.011, PMID 33450218.

Cheng CL, YU LX, Lee HL, Yang CY, Lue CS, Chou CH. Biowaiver extension potential to BCS Class III high solubility low permeability drugs: bridging evidence for metformin immediate release tablet. Eur J Pharm Sci. 2004 Jul;22(4):297-304. doi: 10.1016/j.ejps.2004.03.016, PMID 15196586.

Derosa G, D Angelo A, Romano D, Maffioli P. Effects of metformin extended release compared to immediate release formula on glycemic control and glycemic variability in patients with type 2 diabetes. Drug Des Dev Ther. 2017 May 16;11:1481-8. doi: 10.2147/DDDT.S131670, PMID 28553078.

Kotha AA, Ahmad SU, Dewan I, Bhuiyan MA, Rahman FI, Naina Mohamed I. Metformin hydrochloride loaded mucoadhesive microspheres and nanoparticles for anti-hyperglycemic and anticancer effects using factorial experimental design. Drug Des Dev Ther. 2023 Dec 6;17:3661-84. doi: 10.2147/DDDT.S432790, PMID 38084128.

Ossai EC, Madueke AC, Amadi BE, Ogugofor MO, Momoh AM, Okpala CO. Potential enhancement of metformin hydrochloride in lipid vesicles targeting therapeutic efficacy in diabetic treatment. Int J Mol Sci. 2021 Mar 11;22(6):2852. doi: 10.3390/ijms22062852, PMID 33799652.

Kenechukwu FC, Isaac GT, Nnamani DO, Momoh MA, Attama AA. Enhanced circulation longevity and pharmacodynamics of metformin from surface-modified nanostructured lipid carriers based on solidified reverse micellar solutions. Heliyon. 2022 Mar 15;8(3):e09100. doi: 10.1016/j.heliyon.2022.e09100, PMID 35313488.

Gangavarapu A, Tapia Lopez LV, Sarkar B, Pena Zacarias J, Badruddoza AZ, Nurunnabi M. Lipid nanoparticles for enhancing oral bioavailability. Nanoscale. 2024 Oct 10;16(39):18319-38. doi: 10.1039/d4nr01487a, PMID 39291697.

Chettupalli AK, Bukke SP, Rahaman SA, Unnisa A, Adepu M, Kavitha M. Ritonavir loaded solid lipid nanoparticles for oral drug delivery and bioavailability enhancement. Discov Appl Sci. 2025 Jan 7;7(1):58. doi: 10.1007/s42452-024-06322-1.

AN V, John AP, Priya S, Raviraj C, Ashtekar H. Optimized solid lipid nanoparticles for enhanced oral bioavailability and osteogenic effect of ipriflavone: formulation characterization and in vitro evaluation. Int J App Pharm. 2024 Nov;16(6):79-89. doi: 10.22159/ijap.2024v16i6.51890.

Gaowa A, Horibe T, Kohno M, Kawakami K. Bile acid as an effective absorption enhancer for oral delivery of epidermal growth factor receptor-targeted hybrid peptide. J Pharm Sci. 2018 May;107(5):1322-9. doi: 10.1016/j.xphs.2017.12.012, PMID 29273347.

Pavlovic N, Golocorbin Kon S, Danic M, Stanimirov B, Al Salami H, Stankov K. Bile acids and their derivatives as potential modifiers of drug release and pharmacokinetic profiles. Front Pharmacol. 2018 Nov 8;9:1283. doi: 10.3389/fphar.2018.01283, PMID 30467479.

Asad M, Rasul A, Abbas G, Shah MA, Nazir I. Self-emulsifying drug delivery systems: a versatile approach to enhance the oral delivery of BCS class III drug via hydrophobic ion pairing. PLOS One. 2023 Jun 9;18(6):e0286668. doi: 10.1371/journal.pone.0286668, PMID 37294790.

Fleishman JS, Kumar S. Bile acid metabolism and signaling in health and disease: molecular mechanisms and therapeutic targets. Signal Transduct Target Ther. 2024 Apr 26;9(1):97. doi: 10.1038/s41392-024-01811-6, PMID 38664391.

Chakravarthy PS, Grandhi S, Swami R, Singh I. Quality by design based optimization and development of cyclodextrin inclusion complexes of quercetin for solubility enhancement. Biointerface Res Appl Chem. 2023;13(5):424. doi: 10.33263/BRIAC135.424.

Nadendla RR, Priyanka PV. Optimizing transdermal patch formulation for enhanced delivery of rivaroxaban: a comprehensive design of experiments approach. Int J Pharm Pharm Sci. 2024;16(12):8-20. doi: 10.22159/ijpps.2024v16i12.51075.

Srikar G, Gouthamib KS, Manasac B, Sirishad AS. Formulation optimization and characterization of amlodipine oral disintegrating tablets prepared by co-grinding technique. Pharm Lett. 2013;5(4):335-43.

Hippalgaonkar K, Adelli GR, Hippalgaonkar K, Repka MA, Majumdar S. Indomethacin loaded solid lipid nanoparticles for ocular delivery: development characterization and in vitro evaluation. J Ocul Pharmacol Ther. 2013 Mar;29(2):216-28. doi: 10.1089/jop.2012.0069, PMID 23421502.

Subroto E, Andoyo R, Indiarto R. Solid lipid nanoparticles: review of the current research on encapsulation and delivery systems for active and antioxidant compounds. Antioxidants (Basel). 2023 Mar 3;12(3):633. doi: 10.3390/antiox12030633, PMID 36978881.

Singh S, Dobhal AK, Jain A, Pandit JK, Chakraborty S. Formulation and evaluation of solid lipid nanoparticles of a water soluble drug: zidovudine. Chem Pharm Bull (Tokyo). 2010 May;58(5):650-5. doi: 10.1248/cpb.58.650, PMID 20460791.

Yeo S, Kim MJ, Shim YK, Yoon I, Lee WK. Solid lipid nanoparticles of curcumin designed for enhanced bioavailability and anticancer efficiency. ACS Omega. 2022 Sep 28;7(40):35875-84. doi: 10.1021/acsomega.2c04407, PMID 36249382.

Al Hattali WS, Samuel BA, Philip AK. Enhancing fluconazole solubility and bioavailability through solid dispersion techniques: evaluation of polyethylene glycol 6000 and sodium carboxymethylcellulose systems using fiber optics. Int J Pharm Pharm Sci. 2024;16(12):51-9. doi: 10.22159/ijpps.2024v16i12.52739.

Baka E, Comer JE, Takacs Novak K. Study of equilibrium solubility measurement by saturation shake flask method using hydrochlorothiazide as model compound. J Pharm Biomed Anal. 2008 Jan 22;46(2):335-41. doi: 10.1016/j.jpba.2007.10.030, PMID 18055153.

Navapariya V, M TM. Formulation and characterisation of risedronate sodium sublingual spray. Int J Curr Pharm Sci. 2024;16(6):69-77. doi: 10.22159/ijcpr.2024v16i6.6004.

Jha SK, Karki R, Puttegowda VD, Harinarayana D. In vitro intestinal permeability studies and pharmacokinetic evaluation of famotidine microemulsion for oral delivery. Int Sch Res Not. 2014 Dec 7;2014:452051. doi: 10.1155/2014/452051, PMID 27379272.

Artursson P. Epithelial transport of drugs in cell culture. I: a model for studying the passive diffusion of drugs over intestinal absorptive (caco-2) cells. J Pharm Sci. 1990 Jun;79(6):476-82. doi: 10.1002/jps.2600790604, PMID 1975619.

Podder S, Mukherjee S. Response surface methodology (RSM) as a tool in pharmaceutical formulation development. Asian J Pharm Clin Res. 2024;17(11):18-25. doi: 10.22159/ajpcr.2024v17i11.52149.

Srikar G, Rani AP. Tenofovir loaded poly (lactide-co-glycolide) nanocapsules: formulation optimization by desirability functions approach. Indian J Pharm Educ Res. 2020 Apr 1;54(2S):s230-40. doi: 10.5530/ijper.54.2s.79.

Umeta B, Bekele A, Mohammed T, Duguma M, Teshome H, Mekonnen Y. Dissolution profile evaluation of eight brands of metformin hydrochloride tablets available in Jimma Southwest Ethiopia. Diabetes Metab Syndr Obes. 2021 Aug 5;14:3499-506. doi: 10.2147/DMSO.S316187, PMID 34385824.

Djebbar M, Chaffai N, Bouchal F. Development of floating tablets of metformin HCl by thermoplastic granulation. Part ii: in vitro evaluation of the combined effect of acacia gum/HPMC on biopharmaceutical performances. Adv Pharm Bull. 2020 Jul;10(3):399-407. doi: 10.34172/apb.2020.048, PMID 32665898.

Rojek B, Wesolowski M. A combined differential scanning calorimetry and thermogravimetry approach for the effective assessment of drug substance-excipient compatibility. J Therm Anal Calorim. 2023;148(3):845-58. doi: 10.1007/s10973-022-11849-9.

Joshi AS, Patel HS, Belgamwar VS, Agrawal A, Tekade AR. Solid lipid nanoparticles of ondansetron HCl for intranasal delivery: development optimization and evaluation. J Mater Sci Mater Med. 2012 Sep;23(9):2163-75. doi: 10.1007/s10856-012-4702-7, PMID 22802103.

Grandhi S, Rani AP, Pathuri R. Voriconazole solid lipid nanoparticles: optimization of formulation and process parameters. Res J Pharm Technol. 2018 Jul;11(7):2829-35. doi: 10.5958/0974-360X.2018.00522.

Zoubari G, Staufenbiel S, Volz P, Alexiev U, Bodmeier R. Effect of drug solubility and lipid carrier on drug release from lipid nanoparticles for dermal delivery. Eur J Pharm Biopharm. 2017 Jan;110:39-46. doi: 10.1016/j.ejpb.2016.10.021, PMID 27810471.

Mirchandani Y, Patravale VB, SB. Solid lipid nanoparticles for hydrophilic drugs. J Control Release. 2021 Jul 10;335:457-64. doi: 10.1016/j.jconrel.2021.05.032, PMID 34048841.

Hanafi NI, Mohamed AS, Sheikh Abdul Kadir SH, Othman MH. Overview of bile acids signaling and perspective on the signal of ursodeoxycholic acid the most hydrophilic bile acid in the heart. Biomolecules. 2018 Nov 27;8(4):159. doi: 10.3390/biom8040159, PMID 30486474.

Chen WN, Shaikh MF, Bhuvanendran S, Date A, Ansari MT, Radhakrishnan AK. Poloxamer 188 (P188) a potential polymeric protective agent for central nervous system disorders: a systematic review. Curr Neuropharmacol. 2022;20(4):799-808. doi: 10.2174/1570159X19666210528155801, PMID 34077349.

Pokhrel DR, Sah MK, Gautam B, Basak HK, Bhattarai A, Chatterjee A. A recent overview of surfactant drug interactions and their importance. RSC Adv. 2023 Jun 12;13(26):17685-704. doi: 10.1039/d3ra02883f, PMID 37312992.

Paliwal R, Rai S, Vaidya B, Khatri K, Goyal AK, Mishra N. Effect of lipid core material on characteristics of solid lipid nanoparticles designed for oral lymphatic delivery. Nanomedicine. 2009 Jun;5(2):184-91. doi: 10.1016/j.nano.2008.08.003, PMID 19095502.

Kunieda H, Ohyama KI. Three phase behavior and HLB numbers of bile salts and lecithin in a water oil system. J Colloid Interface Sci. 1990 May 1;136(2):432-9. doi: 10.1016/0021-9797(90)90390-A.

Sivadasan D, Ramakrishnan K, Mahendran J, Ranganathan H, Karuppaiah A, Rahman H. Solid lipid nanoparticles: applications and prospects in cancer treatment. Int J Mol Sci. 2023 Mar 24;24(7):6199. doi: 10.3390/ijms24076199, PMID 37047172.

Bhalekar M, Upadhaya P, Madgulkar A. Formulation and characterization of solid lipid nanoparticles for an anti-retroviral drug darunavir. Appl Nanosci. 2017 Feb;7(1-2):47-57. doi: 10.1007/s13204-017-0547-1.

Aguilera Garrido A, Arranz E, Galvez Ruiz MJ, Marchal JA, Galisteo Gonzalez F, Giblin L. Solid lipid nanoparticles to improve bioaccessibility and permeability of orally administered maslinic acid. Drug Deliv. 2022 Dec;29(1):1971-82. doi: 10.1080/10717544.2022.2086937, PMID 35762633.

Tan JY, Yoon BK, Cho NJ, Lovric J, Jug M, Jackman JA. Lipid nanoparticle technology for delivering biologically active fatty acids and monoglycerides. Int J Mol Sci. 2021 Sep 7;22(18):9664. doi: 10.3390/ijms22189664, PMID 34575831.

Samineni R, Chimakurthy J, Konidala S. Emerging role of biopharmaceutical classification and biopharmaceutical drug disposition system in dosage form development: a systematic review. Turk J Pharm Sci. 2022 Dec 21;19(6):706-13. doi: 10.4274/tjps.galenos.2021.73554, PMID 36544401.

Sherif AY, Harisa GI, Alanazi FK, Nasr FA, Alqahtani AS. Pegylated SLN as a promising approach for lymphatic delivery of gefitinib to lung cancer. Int J Nanomedicine. 2022 Jul 28;17:3287-311. doi: 10.2147/IJN.S365974, PMID 35924261.

Published

07-05-2025

How to Cite

BHAVANI, M. S., & RAVINDRAN, S. (2025). PERMEABILITY ENHANCEMENT OF A BCS CLASS III DRUG THROUGH LIPID-BASED NANOPARTICLES: A QUALITY BY DESIGN APPROACH. International Journal of Applied Pharmaceutics, 17(3), 170–179. https://doi.org/10.22159/ijap.2025v17i3.53483

Issue

Section

Original Article(s)

Similar Articles

<< < 2 3 4 5 6 > >> 

You may also start an advanced similarity search for this article.