LIPID-POLYMER HYBRID NANOPARTICLES AND SILICA-BASED HYBRID NANOPARTICLES FOR CANCER TREATMENT

Authors

  • ANJANA A. KAILAS Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal-576104, Karnataka, India https://orcid.org/0009-0005-5796-792X
  • ANNAMALAI RAMA Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal-576104, Karnataka, India
  • BHAUTIK LADANI Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal-576104, Karnataka, India
  • INDUJA GOVINDAN Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal-576104, Karnataka, India https://orcid.org/0000-0002-4165-0419
  • K. A. ABUTWAIBE Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal-576104, Karnataka, India
  • ANUP NAHA Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal-576104, Karnataka, India

DOI:

https://doi.org/10.22159/ijap.2025v17i4.53823

Keywords:

Cancer, Lipid-polymer hybrid nanoparticles, Silica-based hybrid nanoparticles, Modified emulsification solvent evaporation, Nanoprecipitation, Polymeric core

Abstract

The development of complex nanoparticles with enhanced tumor therapy selectivity and effectiveness is now achievable thanks to nanotechnology. Despite the vast number of nanostructures, such as liposomes, solid-lipid nanoparticles, Lipid-Polymer Hybrid Nanoparticles (LPHNPs), and Silica-based Hybrid Nanoparticles (SHNPs), have been developed as carriers for drug delivery for different pathologies with remarkably promising results. In the present study, we have discussed simple and efficient preparation methods for lipid-polymer and silica-based nanoparticles. These methods reduce the potential for toxicity as the drug molecules can be delivered to the pharmacological sites of action at an optimal controlled rate. With adequate preparation methods, lipid hybrid and silica-based nanoparticles can be developed to reduce adverse effects. Significant improvement has been made in preparing and functionalizing the hybrid nanoparticle for advancing cancer treatment. Studies prove that LPHNPs have exhibited drug-loading efficiency of around 60-70%, which is more than liposomal systems. The ability of these nanoparticles to circulate through the Reticulo-Endothelial System (RES) also results in a significant increase in circulation time, with a half-life of up to 12 h. These hybrid nanoparticles with high drug loading efficiency and specific targeting efficiency can help precisely target the tumor cells.

References

Davis ME, Chen ZG, Shin DM. Nanoparticle therapeutics: an emerging treatment modality for cancer. Nat Rev Drug Discov. 2008;7(9):771-82. doi: 10.1038/nrd2614, PMID 18758474.

Sailor MJ, Park JH. Hybrid nanoparticles for detection and treatment of cancer. Adv Mater. 2012;24(28):3779-802. doi: 10.1002/adma.201200653, PMID 22610698.

Muthu MS, Leong DT, Mei L, Feng SS. Nanotheranostics application and further development of nanomedicine strategies for advanced theranostics. Theranostics. 2014;4(6):660-77. doi: 10.7150/thno.8698, PMID 24723986.

Mahzabin A, Das B. A review of lipid polymer hybrid nanoparticles as a new generation drug delivery system. Int J Pharm Sci Res. 2020;12(1):65-75. doi: 10.13040/IJPSR.0975-8232.12(1).

Fang RH, Chen KN, Aryal S, Hu CM, Zhang K, Zhang L. Large scale synthesis of lipid polymer hybrid nanoparticles using a multi-inlet vortex reactor. Langmuir. 2012;28(39):13824-9. doi: 10.1021/la303012x, PMID 22950917.

Nakamura Y, Mochida A, Choyke PL, Kobayashi H. Nanodrug delivery: is the enhanced permeability and retention effect sufficient for curing cancer? Bioconjug Chem. 2016;27(10):2225-38. doi: 10.1021/acs.bioconjchem.6b00437, PMID 27547843.

Elzoghby AO, Hemasa AL, Freag MS. Hybrid protein inorganic nanoparticles: from tumor-targeted drug delivery to cancer imaging. J Control Release. 2016 Dec 10;243:303-22. doi: 10.1016/j.jconrel.2016.10.023, PMID 27794493.

Elzoghby AO, Samy WM, Elgindy NA. Protein-based nanocarriers as promising drug and gene delivery systems. J Control Release. 2012;161(1):38-49. doi: 10.1016/j.jconrel.2012.04.036, PMID 22564368.

Elzoghby AO, Helmy MW, Samy WM, Elgindy NA. Novel ionically crosslinked casein nanoparticles for flutamide delivery: formulation characterization and in vivo pharmacokinetics. Int J Nanomedicine. 2013 May 13;8:1721-32. doi: 10.2147/IJN.S40674, PMID 23658490.

Kim J, Kim HS, Lee N, Kim T, Kim H, Yu T. Multifunctional uniform nanoparticles composed of a magnetite nanocrystal core and a mesoporous silica shell for magnetic resonance and fluorescence imaging and for drug delivery. Angew Chem Int Ed Engl. 2008;47(44):8438-41. doi: 10.1002/anie.200802469, PMID 18726979.

Kaur P, Garg T, Rath G, Goyal AK. Boosting the skin delivery of curcumin through lipid polymer hybrid nanoparticles. Int J Appl Pharm. 2021;13(1):261-7. doi: 10.22159/ijap.2021.v13i1.39645.

Iranshahy M, Hanafi Bojd MY, Aghili SH, Iranshahi M, Nabavi SM, Saberi S. Curcumin loaded mesoporous silica nanoparticles for drug delivery: synthesis biological assays and therapeutic potential a review. RSC Adv. 2023;13(32):22250-67. doi: 10.1039/D3RA02772D, PMID 37492509.

Dave V, Tak K, Sohgaura A, Gupta A, Sadhu V, Reddy KR. Lipid polymer hybrid nanoparticles: synthesis strategies and biomedical applications. J Microbiol Methods. 2019 May;160:130-42. doi: 10.1016/j.mimet.2019.03.017, PMID 30898602.

Al Jamal WT, Kostarelos K. Liposomes: from a clinically established drug delivery system to a nanoparticle platform for theranostic nanomedicine. Acc Chem Res. 2011;44(10):1094-104. doi: 10.1021/ar200105p, PMID 21812415.

Krishnamurthy S, Vaiyapuri R, Zhang L, Chan JM. Lipid-coated polymeric nanoparticles for cancer drug delivery. Biomater Sci. 2015;3(7):923-36. doi: 10.1039/c4bm00427b, PMID 26221931.

Clawson C, Ton L, Aryal S, Fu V, Esener S, Zhang L. Synthesis and characterization of lipid polymer hybrid nanoparticles with pH-triggered poly(ethylene glycol) shedding. Langmuir. 2011;27(17):10556-61. doi: 10.1021/la202123e, PMID 21806013.

Wu B, Lu ST, Zhang LJ, Zhuo RX, Xu HB, Huang SW. Codelivery of doxorubicin and triptolide with reduction-sensitive lipid polymer hybrid nanoparticles for in vitro and in vivo synergistic cancer treatment. Int J Nanomedicine. 2017 Mar 8;12:1853-62. doi: 10.2147/IJN.S131235, PMID 28331310.

Chen L, Zhou X, Shi Y, Gao B, Wu J, Kirk TB. Green synthesis of lignin nanoparticle in aqueous hydrotropic solution toward broadening the window for its processing and application. Chem Eng J. 2018 Aug 15;346:217-25. doi: 10.1016/j.cej.2018.04.020.

Poudel BK, Gupta B, Ramasamy T, Thapa RK, Youn YS, Choi HG. Development of polymeric irinotecan nanoparticles using a novel lactone preservation strategy. Int J Pharm. 2016;512(1):75-86. doi: 10.1016/j.ijpharm.2016.08.018, PMID 27558884.

Ramasamy T, Tran TH, Choi JY, Cho HJ, Kim JH, Yong CS. Layer-by-layer coated lipid polymer hybrid nanoparticles designed for use in anticancer drug delivery. Carbohydr Polym. 2014 Feb 15;102:653-61. doi: 10.1016/j.carbpol.2013.11.009, PMID 24507332.

Hadinoto K, Sundaresan A, Cheow WS. Lipid polymer hybrid nanoparticles as a new generation therapeutic delivery platform: a review. Eur J Pharm Biopharm. 2013;85(3 Pt A):427-43. doi: 10.1016/j.ejpb.2013.07.002, PMID 23872180.

Sengupta S, Eavarone D, Capila I, Zhao G, Watson N, Kiziltepe T. Temporal targeting of tumour cells and neovasculature with a nanoscale delivery system. Nature. 2005;436(7050):568-72. doi: 10.1038/nature03794, PMID 16049491.

Seedat N, Kalhapure RS, Mocktar C, Vepuri S, Jadhav M, Soliman M. Co-encapsulation of multi-lipids and polymers enhances the performance of vancomycin in lipid polymer hybrid nanoparticles: in vitro and in silico studies. Mater Sci Eng C Mater Biol Appl. 2016 Apr 1;61:616-30. doi: 10.1016/j.msec.2015.12.053, PMID 26838890.

Javaid A, K AA, Sharma KK, P MS, Verma A, Mudavath SL. Niacin-loaded liquid crystal nanoparticles ameliorate prostaglandin D2-mediated niacin-induced flushing and hepatotoxicity. ACS Appl Nano Mater. 2024;7(1):444-54. doi: 10.1021/acsanm.3c04649.

Wang Y, Kho K, Cheow WS, Hadinoto K. A comparison between spray drying and spray freeze drying for dry powder inhaler formulation of drug-loaded lipid polymer hybrid nanoparticles. Int J Pharm. 2012;424(1-2):98-106. doi: 10.1016/j.ijpharm.2011.12.045, PMID 22226876.

Hasan W, Chu K, Gullapalli A, Dunn SS, Enlow EM, Luft JC. Delivery of multiple siRNAs using lipid-coated PLGA nanoparticles for treatment of prostate cancer. Nano Lett. 2012;12(1):287-92. doi: 10.1021/nl2035354, PMID 22165988.

Rahman M, Alharbi KS, Alruwaili NK, Anfinan N, Almalki WH, Padhy I. Nucleic acid loaded lipid polymer nanohybrids as novel nanotherapeutics in anticancer therapy. Expert Opin Drug Deliv. 2020;17(6):805-16. doi: 10.1080/17425247.2020.1757645, PMID 32329630.

Feng Q, Zhang L, Liu C, Li X, Hu G, Sun J. Microfluidic-based high throughput synthesis of lipid polymer hybrid nanoparticles with tunable diameters. Biomicrofluidics. 2015;9(5):52604. doi: 10.1063/1.4922957, PMID 26180574.

Mandal B, Mittal NK, Balabathula P, Thoma LA, Wood GC. Development and in vitro evaluation of core-shell type lipid polymer hybrid nanoparticles for the delivery of erlotinib in non-small cell lung cancer. Eur J Pharm Sci. 2016 Jan 1;81:162-71. doi: 10.1016/j.ejps.2015.10.021, PMID 26517962.

Huang X, Lee RJ, Qi Y, Li Y, Lu J, Meng Q. Microfluidic hydrodynamic focusing synthesis of polymer lipid nanoparticles for siRNA delivery. Oncotarget. 2017;8(57):96826-36. doi: 10.18632/oncotarget.18281, PMID 29228574.

Zhang LI, Zhang L. Lipid polymer hybrid nanoparticles: synthesis characterization and applications. Nano Life. 2010;1(01n02):163-73. doi: 10.1142/S179398441000016X.

Betancourt T, Brown B, Brannon Peppas L. Doxorubicin loaded PLGA nanoparticles by nanoprecipitation: preparation characterization and in vitro evaluation. Nanomedicine (Lond). 2007;2(2):219-32. doi: 10.2217/17435889.2.2.219, PMID 17716122.

Fang RH, Aryal S, Hu CM, Zhang L. Quick synthesis of lipid polymer hybrid nanoparticles with low polydispersity using a single-step sonication method. Langmuir. 2010;26(22):16958-62. doi: 10.1021/la103576a, PMID 20961057.

Chen Y, Chen M, Zhang Y, Lee JH, Escajadillo T, Gong H. Broad spectrum neutralization of pore‐forming toxins with human erythrocyte membrane coated nanosponges. Adv Healthc Mater. 2018;7(13):e1701366. doi: 10.1002/adhm.201701366, PMID 29436150.

Zhang Q, Honko A, Zhou J, Gong H, Downs SN, Vasquez JH. Cellular nanosponges inhibit SARS-CoV-2 infectivity. Nano Lett. 2020;20(7):5570-4. doi: 10.1021/acs.nanolett.0c02278, PMID 32551679.

Parvez S, Yadagiri G, Gedda MR, Singh A, Singh OP, Verma A. Modified solid lipid nanoparticles encapsulated with amphotericin B and paromomycin: an effective oral combination against experimental murine visceral leishmaniasis. Sci Rep. 2020;10(1):12243. doi: 10.1038/s41598-020-69276-5, PMID 32699361.

Wang F, Gao W, Thamphiwatana S, Luk BT, Angsantikul P, Zhang Q. Hydrogel retaining toxin absorbing nanosponges for local treatment of methicillin-resistant staphylococcus aureus infection. Adv Mater. 2015;27(22):3437-43. doi: 10.1002/adma.201501071, PMID 25931231.

Ma P, Li T, Xing H, Wang S, Sun Y, Sheng X. Local anesthetic effects of bupivacaine loaded lipid polymer hybrid nanoparticles: in vitro and in vivo evaluation. Biomed Pharmacother. 2017 May;89:689-95. doi: 10.1016/j.biopha.2017.01.175, PMID 28267672.

Garg NK, Singh B, Sharma G, Kushwah V, Tyagi RK, Jain S. Development and characterization of single-step self-assembled lipid polymer hybrid nanoparticles for effective delivery of methotrexate. RSC Adv. 2015;5(77):62989-99. doi: 10.1039/C5RA12459J.

Valencia PM, Basto PA, Zhang L, Rhee M, Langer R, Farokhzad OC. Single-step assembly of homogenous lipid polymeric and lipid quantum dot nanoparticles enabled by microfluidic rapid mixing. ACS Nano. 2010;4(3):1671-9. doi: 10.1021/nn901433u, PMID 20166699.

Sang R, Deng F, Engel A, Goldys E, Deng W. Lipid polymer nanocarrier platform enables X-ray induced photodynamic therapy against human colorectal cancer cells. Biomed Pharmacother. 2022 Nov;155:113837. doi: 10.1016/j.biopha.2022.113837, PMID 36271586.

Sakpakdeejaroen I, Muanrit P, Panthong S, Ruangnoo S. Alpha mangostin loaded transferring conjugated lipid polymer hybrid nanoparticles: development and characterization for tumor-targeted delivery. Scientific World Journal. 2022;2022:9217268. doi: 10.1155/2022/9217268, PMID 36081606.

Kazmi I, Al Abbasi FA, Imam SS, Afzal M, Nadeem MS, Altayb HN. Formulation and evaluation of apigenin-loaded hybrid nanoparticles. Pharmaceutics. 2022;14(4):783. doi: 10.3390/pharmaceutics14040783, PMID 35456617.

Ahmed MM, Anwer MK, Fatima F, Aldawsari MF, Alalaiwe A, Alali AS. Boosting the anticancer activity of sunitinib malate in breast cancer through lipid polymer hybrid nanoparticles approach. Polymers. 2022;14(12):2459. doi: 10.3390/polym14122459, PMID 35746034.

Imam SS, Gilani SJ, Bin Jumah MN, Rizwanullah M, Zafar A, Ahmed MM. Harnessing lipid polymer hybrid nanoparticles for enhanced oral bioavailability of thymoquinone: in vitro and in vivo assessments. Polymers. 2022;14(18):3705. doi: 10.3390/polym14183705, PMID 36145851.

Li Q, Cai T, Huang Y, Xia X, Cole SP, Cai Y. A review of the structure preparation and application of NLCs, PNPs, and PLNs. Nanomaterials (Basel). 2017;7(6):122. doi: 10.3390/nano7060122, PMID 28554993.

Palange AL, Di Mascolo D, Carallo C, Gnasso A, Decuzzi P. Lipid polymer nanoparticles encapsulating curcumin for modulating the vascular deposition of breast cancer cells. Nanomedicine. 2014;10(5):991-1002. doi: 10.1016/j.nano.2014.02.004, PMID 24566270.

Asuman Bozkır BD. Design and evaluation of hydrophobic ion-pairing complexation of lysozyme with sodium dodecyl sulfate for improved encapsulation of hydrophilic peptides/proteins by lipid polymer hybrid nanoparticles. J Nanomed Nanotechnol. 2015;6(1):1. doi: 10.4172/2157-7439.1000259.

Devrim B, Kara A, Vural I, Bozkır A. Lysozyme loaded lipid polymer hybrid nanoparticles: preparation characterization and colloidal stability evaluation. Drug Dev Ind Pharm. 2016;42(11):1865-76. doi: 10.1080/03639045.2016.1180392, PMID 27091346.

Wang J, Zhang L, Chi H, Wang S. An alternative choice of lidocaine loaded liposomes: lidocaine loaded lipid polymer hybrid nanoparticles for local anesthetic therapy. Drug Deliv. 2016;23(4):1254-60. doi: 10.3109/10717544.2016.1141259, PMID 26881926.

Zhang H, Dong S, Zhang S, Li Y, Li J, Dai Y. pH-responsive lipid polymer hybrid nanoparticles (LPHNs) based on poly (β-amino ester) as a promising candidate to resist breast cancers. J Drug Deliv Sci Technol. 2021 Feb;61:102102. doi: 10.1016/j.jddst.2020.102102.

Zhao X, Li F, Li Y, Wang H, Ren H, Chen J. Co-delivery of HIF1α siRNA and gemcitabine via biocompatible lipid polymer hybrid nanoparticles for effective treatment of pancreatic cancer. Biomaterials. 2015 Apr;46:13-25. doi: 10.1016/j.biomaterials.2014.12.028, PMID 25678112.

Vencken S, Foged C, Ramsey JM, Sweeney L, Cryan SA, MacLoughlin RJ. Nebulised lipid polymer hybrid nanoparticles for the delivery of a therapeutic anti-inflammatory microRNA to bronchial epithelial cells. ERJ Open Res. 2019;5(2):00161-2018. doi: 10.1183/23120541.00161-2018, PMID 30972350.

Scopel R, Falcao MA, Cappellari AR, Morrone FB, Guterres SS, Cassel E. Lipid polymer hybrid nanoparticles as a targeted drug delivery system for melanoma treatment. Int J Polym Mater Polym Biomater. 2022;71(2):127-38. doi: 10.1080/00914037.2020.1809406.

Jangde R, Elhassan GO, Khute S, Singh D, Singh M, Sahu RK. Hesperidin loaded lipid polymer hybrid nanoparticles for topical delivery of bioactive drugs. Pharmaceuticals (Basel). 2022;15(2):211. doi: 10.3390/ph15020211, PMID 35215324.

Liu Y, Zhao Y, Liu J, Zhang M, Yu M, Feng N. Wheat germ agglutinin modification of lipid polymer hybrid nanoparticles: enhanced cellular uptake and bioadhesion. RSC Adv. 2016;6(42):36125-35. doi: 10.1039/C6RA04023C.

Ma Z, Liu J, Li X, Xu Y, Liu D, He H. Hydroxycamptothecin (HCPT) loaded PEGlated lipid polymer hybrid nanoparticles for effective delivery of HCPT: QbD based development and evaluation. Drug Deliv Transl Res. 2022;12(1):306-24. doi: 10.1007/s13346-021-00939-0, PMID 33712991.

Lu Q, Liu W, Yang L, Zu Y, Zu B, Zhu M. Investigation of the effects of different organosolv pulping methods on antioxidant capacity and extraction efficiency of lignin. Food Chem. 2012;131(1):313-7. doi: 10.1016/j.foodchem.2011.07.116.

Zhang L, Zhu D, Dong X, Sun H, Song C, Wang C. Folate modified lipid polymer hybrid nanoparticles for targeted paclitaxel delivery. Int J Nanomedicine. 2015 Mar 16;10:2101-14. doi: 10.2147/IJN.S77667, PMID 25844039.

Gu L, Shi T, Sun Y, You C, Wang S, Wen G. Folate modified indocyanine green loaded lipid polymer hybrid nanoparticles for targeted delivery of cisplatin. J Biomater Sci Polym Ed. 2017;28(7):690-702. doi: 10.1080/09205063.2017.1296347, PMID 28277002.

Alhajamee M, Marai K, Al Abbas SM, Homayouni Tabrizi M. Co-encapsulation of curcumin and tamoxifen in lipid chitosan hybrid nanoparticles for cancer therapy. Materials Technology. 2022;37(9):1183-94. doi: 10.1080/10667857.2021.1926811.

Fu D, Li C, Huang Y. Lipid polymer hybrid nanoparticle-based combination treatment with cisplatin and EGFR/HER2 receptor targeting afatinib to enhance the treatment of nasopharyngeal carcinoma. Onco Targets Ther. 2021 Apr 9;14:2449-61. doi: 10.2147/OTT.S286813, PMID 33859480.

Liu X, Yin H, Zhang Z, Diao B, Li J. Functionalization of lignin through ATRP grafting of poly(2-dimethylaminoethyl methacrylate) for gene delivery. Colloids Surf B Biointerfaces. 2015 Jan 1;125:230-7. doi: 10.1016/j.colsurfb.2014.11.018, PMID 25506805.

Defang O, Shufang N, Wei L, Hong G, Hui L, Weisan P. In vitro and in vivo evaluation of two extended-release preparations of combination metformin and glipizide. Drug Dev Ind Pharm. 2005;31(7):677-85. doi: 10.1080/03639040500216410, PMID 16207615.

Liu H, Zhuang Y, Wang P, Zou T, Lan M, Li L. Polymeric lipid hybrid nanoparticles as a delivery system enhance the antitumor effect of emodin in vitro and in vivo. J Pharm Sci. 2021;110(8):2986-96. doi: 10.1016/j.xphs.2021.04.006, PMID 33864779.

Khan S, Aamir MN, Madni A, Jan N, Khan A, Jabar A. Lipid poly (ɛ-caprolactone) hybrid nanoparticles of 5-fluorouracil for sustained release and enhanced anticancer efficacy. Life Sci. 2021 Nov 1;284:119909. doi: 10.1016/j.lfs.2021.119909, PMID 34450169.

Clawson C, Ton L, Aryal S, Fu V, Esener S, Zhang L. Synthesis and characterization of lipid polymer hybrid nanoparticles with pH-triggered poly(ethylene glycol) shedding. Langmuir. 2011;27(17):10556-61. doi: 10.1021/la202123e, PMID 21806013.

Xu H, Cai C, Gou J, Sui B, Jin J, Xu H. Self-assembled monomethoxy (polyethylene glycol)-b-p(d,l-lactic-co-glycolic acid)-b-p(l-glutamic acid) hybrid-core nanoparticles for intracellular ph-triggered release of doxorubicin. J Biomed Nanotechnol. 2015;11(8):1354-69. doi: 10.1166/jbn.2015.2088, PMID 26295138.

Kong SD, Sartor M, Hu CM, Zhang W, Zhang L, Jin S. Magnetic field activated lipid polymer hybrid nanoparticles for stimuli-responsive drug release. Acta Biomater. 2013;9(3):5447-52. doi: 10.1016/j.actbio.2012.11.006, PMID 23149252.

Chen X, Zhang Z, Yang S, Chen H, Wang D, Li J. All trans-retinoic acid encapsulated CD20 antibody conjugated poly(lactic-co-glycolic acid) nanoparticles effectively target and eliminate melanoma initiating cells in vitro. Onco Targets Ther. 2018;11:6177-87. doi: 10.2147/OTT.S169957, PMID 30288053.

Dehaini D, Fang RH, Luk BT, Pang Z, Hu CM, Kroll AV. Ultra-small lipid polymer hybrid nanoparticles for tumor penetrating drug delivery. Nanoscale. 2016;8(30):14411-9. doi: 10.1039/c6nr04091h, PMID 27411852.

Zhang P, Ling G, Pan X, Sun J, Zhang T, Pu X. Novel nanostructured lipid dextran sulfate hybrid carriers overcome tumor multidrug resistance of mitoxantrone hydrochloride. Nanomedicine. 2012;8(2):185-93. doi: 10.1016/j.nano.2011.06.007, PMID 21704599.

Kim Y, Lee Chung B, Ma M, Mulder WJ, Fayad ZA, Farokhzad OC. Mass production and size control of lipid polymer hybrid nanoparticles through controlled microvortices. Nano Lett. 2012;12(7):3587-91. doi: 10.1021/nl301253v, PMID 22716029.

Bose RJ, Ravikumar R, Karuppagounder V, Bennet D, Rangasamy S, Thandavarayan RA. Lipid polymer hybrid nanoparticle mediated therapeutics delivery: advances and challenges. Drug Discov Today. 2017;22(8):1258-65. doi: 10.1016/j.drudis.2017.05.015, PMID 28600191.

Qiu Y, Palankar R, Echeverria M, Medvedev N, Moya SE, Delcea M. Design of hybrid multimodal poly(lactic-co-glycolic acid) polymer nanoparticles for neutrophil labeling imaging and tracking. Nanoscale. 2013;5(24):12624-32. doi: 10.1039/c3nr04013e, PMID 24177321.

Zeng SQ, Chen YZ, Chen Y, Liu H. Lipid polymer hybrid nanoparticles for synergistic drug delivery to overcome cancer drug resistance. New J Chem. 2017;41(4):1518-25. doi: 10.1039/C6NJ02819E.

Awasthi R, Sharma A, Singh AK, Mishra N. Lipid polycaprolactone core-shell hybrid nanoparticles for controlled delivery of nateglinide. Asian J Pharm. 2021;15(2):157-64. doi: 10.22377/ajp.v15i2.4059.

Shah J, Patel S, Bhairy S, Hirlekar R. Formulation optimization characterization and in vitro anti-cancer activity of curcumin loaded nanostructured lipid carriers. Int J Curr Pharm Sci. 2022;14(1):31-43. doi: 10.22159/ijcpr.2022v14i1.44110.

Kuthati Y, Sung PJ, Weng CF, Mou CY, Lee CH. Functionalization of mesoporous silica nanoparticles for targeting biocompatibility combined cancer therapies and theragnosis. J Nanosci Nanotechnol. 2013;13(4):2399-430. doi: 10.1166/jnn.2013.7363, PMID 23763117.

Chen Y, Zhang H, Cai X, Ji J, He S, Zhai G. Multifunctional mesoporous silica nanocarriers for stimuli-responsive target delivery of anticancer drugs. RSC Adv. 2016;6(94):92073-91. doi: 10.1039/C6RA18062K.

Chou LY, Ming K, Chan WC. Strategies for the intracellular delivery of nanoparticles. Chem Soc Rev. 2011;40(1):233-45. doi: 10.1039/c0cs00003e, PMID 20886124.

Chen Y, Chen H, Shi J. In vivo bio‐safety evaluations and diagnostic/therapeutic applications of chemically designed mesoporous silica nanoparticles. Adv Mater. 2013;25(23):3144-76. doi: 10.1002/adma.201205292, PMID 23681931.

Ilhan Ayisigi E, Yesil Celiktas O. Silica-based organic inorganic hybrid nanoparticles and nanoconjugates for improved anticancer drug delivery. Eng Life Sci. 2018;18(12):882-92. doi: 10.1002/elsc.201800038, PMID 32624882.

Pereira C, Alves C, Monteiro A, Magen C, Pereira AM, Ibarra A. Designing novel hybrid materials by one-pot co-condensation: from hydrophobic mesoporous silica nanoparticles to superamphiphobic cotton textiles. ACS Appl Mater Interfaces. 2011;3(7):2289-99. doi: 10.1021/am200220x, PMID 21615151.

Digigow RG, Dechezelles JF, Dietsch H, Geissbuhler I, Vanhecke D, Geers C. Preparation and characterization of functional silica hybrid magnetic nanoparticles. J Magn Magn Mater. 2014 Aug;362:72-9. doi: 10.1016/j.jmmm.2014.03.026.

Tian Y, Glogowska A, Zhong W, Klonisch T, Xing M. Polymeric mesoporous silica nanoparticles as a pH-responsive switch to control doxorubicin intracellular delivery. J Mater Chem B. 2013;1(39):5264-72. doi: 10.1039/c3tb20544d, PMID 32263329.

Park JH, Gu L, Von Maltzahn G, Ruoslahti E, Bhatia SN, Sailor MJ. Biodegradable luminescent porous silicon nanoparticles for in vivo applications. Nat Mater. 2009;8(4):331-6. doi: 10.1038/nmat2398, PMID 19234444.

Baeza A, Colilla M, Vallet Regi M. Advances in mesoporous silica nanoparticles for targeted stimuli-responsive drug delivery. Expert Opin Drug Deliv. 2015;12(2):319-37. doi: 10.1517/17425247.2014.953051, PMID 25421898.

Tsai CP, Chen CY, Hung Y, Chang FH, Mou CY. Monoclonal antibody functionalized mesoporous silica nanoparticles (MSN) for selective targeting breast cancer cells. J Mater Chem. 2009;19(32):5737-43. doi: 10.1039/B905158A.

Chen X, Sun H, Hu J, Han X, Liu H, Hu Y. Transferrin gated mesoporous silica nanoparticles for redox responsive and targeted drug delivery. Colloids Surf B Biointerfaces. 2017 Apr 1;152:77-84. doi: 10.1016/j.colsurfb.2017.01.010, PMID 28088015.

Pan L, He Q, Liu J, Chen Y, Ma M, Zhang L. Nuclear targeted drug delivery of TAT peptide conjugated monodisperse mesoporous silica nanoparticles. J Am Chem Soc. 2012;134(13):5722-5. doi: 10.1021/ja211035w, PMID 22420312.

Pascual L, Cerqueira Coutinho C, Garcia Fernandez A, De Luis B, Bernardes ES, Albernaz MS. MUC1 aptamer capped mesoporous silica nanoparticles for controlled drug delivery and radio imaging applications. Nanomedicine. 2017;13(8):2495-505. doi: 10.1016/j.nano.2017.08.006, PMID 28842375.

Vandeghinste B, Van Holen R, Vanhove C, De Vos F, Vandenberghe S, Staelens S. Use of a ray-based reconstruction algorithm to accurately quantify preclinical microspect images. Mol Imaging. 2014;13(4):1-13. doi: 10.2310/7290.2014.00007.

Wang Z, Wu P, He Z, He H, Rong W, Li J. Mesoporous silica nanoparticles with lactose mediated targeting effect to deliver platinum (iv) prodrug for liver cancer therapy. J Mater Chem B. 2017;5(36):7591-7. doi: 10.1039/C7TB01704A, PMID 32264234.

AbouAitah K, Swiderska Sroda A, Farghali AA, Wojnarowicz J, Stefanek A, Gierlotka S. Folic acid conjugated mesoporous silica particles as nanocarriers of natural prodrugs for cancer targeting and antioxidant action. Oncotarget. 2018;9(41):26466-90. doi: 10.18632/oncotarget.25470, PMID 29899871.

Song Y, Li Y, Xu Q, Liu Z. Mesoporous silica nanoparticles for stimuli-responsive controlled drug delivery: advances challenges and outlook. Int J Nanomedicine. 2017 Dec 20;12:87-110. doi: 10.2147/IJN.S117495, PMID 28053526.

Yang K, Luo H, Zeng M, Jiang Y, Li J, Fu X. Intracellular pH-triggered targeted drug delivery to cancer cells by multifunctional envelope type mesoporous silica nanocontainers. ACS Appl Mater Interfaces. 2015;7(31):17399-407. doi: 10.1021/acsami.5b04684, PMID 26196506.

Chen T, Wu W, Xiao H, Chen Y, Chen M, Li J. Intelligent drug delivery system based on mesoporous silica nanoparticles coated with an ultra-ph-sensitive gatekeeper and poly(ethylene glycol). ACS Macro Lett. 2016;5(1):55-8. doi: 10.1021/acsmacrolett.5b00765, PMID 35668579.

Meng H, Xue M, Xia T, Zhao YL, Tamanoi F, Stoddart JF. Autonomous in vitro anticancer drug release from mesoporous silica nanoparticles by pH-sensitive nanovalves. J Am Chem Soc. 2010;132(36):12690-7. doi: 10.1021/ja104501a, PMID 20718462.

Zheng Q, Hao Y, Ye P, Guo L, Wu H, Guo Q. A pH-responsive controlled release system using layered double hydroxide (LDH)-capped mesoporous silica nanoparticles. J Mater Chem B. 2013;1(11):1644-8. doi: 10.1039/c3tb00518f, PMID 32260728.

Dai L, Li J, Zhang B, Liu J, Luo Z, Cai K. Redox responsive nanocarrier based on heparin end capped mesoporous silica nanoparticles for targeted tumor therapy in vitro and in vivo. Langmuir. 2014;30(26):7867-77. doi: 10.1021/la501924p, PMID 24933090.

Wu S, Huang X, Du X. pH and redox triggered synergistic controlled release of a ZnO gated hollow mesoporous silica drug delivery system. J Mater Chem B. 2015;3(7):1426-32. doi: 10.1039/c4tb01794c, PMID 32264493.

Xu JH, Gao FP, Li LL, Ma HL, Fan YS, Liu W. Gelatin mesoporous silica nanoparticles as matrix metalloproteinases degradable drug delivery systems in vivo. Micropor Mesopor Mater. 2013 Dec 1;182:165-72. doi: 10.1016/j.micromeso.2013.08.050.

Cheng YJ, Luo GF, Zhu JY, Xu XD, Zeng X, Cheng DB. Enzyme-induced and tumor-targeted drug delivery system based on multifunctional mesoporous silica nanoparticles. ACS Appl Mater Interfaces. 2015;7(17):9078-87. doi: 10.1021/acsami.5b00752, PMID 25893819.

Amgoth C, Joshi S. Thermosensitive block copolymer [(PNIPAM)-b-(glycine)] thin film as protective layer for drug-loaded mesoporous silica nanoparticles. Mater Res Express. 2017;4(10):105306. doi: 10.1088/2053-1591/aa91eb.

Sun JT, Yu ZQ, Hong CY, Pan CY. Biocompatible zwitterionic sulfobetaine copolymer-coated mesoporous silica nanoparticles for temperature-responsive drug release. Macromol Rapid Commun. 2012;33(9):811-8. doi: 10.1002/marc.201100876, PMID 22488562.

Tian Z, Yu X, Ruan Z, Zhu M, Zhu Y, Hanagata N. Magnetic mesoporous silica nanoparticles coated with thermo responsive copolymer for potential chemo and magnetic hyperthermia therapy. Micropor Mesopor Mater. 2018 Jan 15;256:1-9. doi: 10.1016/j.micromeso.2017.07.053.

Manzano M, Vallet Regi M. Ultrasound responsive mesoporous silica nanoparticles for biomedical applications. Chem Commun (Camb). 2019;55(19):2731-40. doi: 10.1039/c8cc09389j, PMID 30694270.

Paris JL, Cabañas MV, Manzano M, Vallet Regi M. Polymer grafted mesoporous silica nanoparticles as ultrasound responsive drug carriers. ACS Nano. 2015;9(11):11023-33. doi: 10.1021/acsnano.5b04378, PMID 26456489.

Li F, Zhu Y, Wang Y. Dual responsive drug delivery system with real-time tunable release behavior. Micropor Mesopor Mater. 2014 Dec;200:46-51. doi: 10.1016/j.micromeso.2014.07.060.

Gao F, Zhang J, Fu C, Xie X, Peng F, You J. iRGD-modified lipid polymer hybrid nanoparticles loaded with isoliquiritigenin to enhance anti-breast cancer effect and tumor targeting ability. Int J Nanomedicine. 2017 Jun 1;12:4147-62. doi: 10.2147/IJN.S134148, PMID 28615942.

Garg NK, Tyagi RK, Sharma G, Jain A, Singh B, Jain S. Functionalized lipid polymer hybrid nanoparticles mediated code livery of methotrexate and aceclofenac: a synergistic effect in breast cancer with improved pharmacokinetics attributes. Mol Pharm. 2017;14(6):1883-97. doi: 10.1021/acs.molpharmaceut.6b01148, PMID 28402673.

Golub JS, Kim YT, Duvall CL, Bellamkonda RV, Gupta D, Lin AS. Sustained VEGF delivery via PLGA nanoparticles promotes vascular growth. Am J Physiol Heart Circ Physiol. 2010;298(6):H1959-65. doi: 10.1152/ajpheart.00199.2009, PMID 20228260.

Tang L, Azzi J, Kwon M, Mounayar M, Tong R, Yin Q. Immunosuppressive activity of size controlled PEG-PLGA nanoparticles containing encapsulated cyclosporine A. J Transplant. 2012;2012:896141. doi: 10.1155/2012/896141, PMID 22545201.

Zhao X, Ng S, Heng BC, Guo J, Ma L, Tan TT. Cytotoxicity of hydroxyapatite nanoparticles is shape and cell dependent. Arch Toxicol. 2013;87(6):1037-52. doi: 10.1007/s00204-012-0827-1, PMID 22415765.

Yang Z, Luo X, Zhang X, Liu J, Jiang Q. Targeted delivery of 10-hydroxy camptothecin to human breast cancers by cyclic RGD-modified lipid polymer hybrid nanoparticles. Biomed Mater. 2013;8(2):25012. doi: 10.1088/1748-6041/8/2/025012, PMID 23507576.

Chen Y, Deng Y, Zhu C, Xiang C. Anti-prostate cancer therapy: aptamer functionalized curcumin and cabazitaxel co-delivered tumor-targeted lipid polymer hybrid nanoparticles. Biomed Pharmacother. 2020 Jul;127:110181. doi: 10.1016/j.biopha.2020.110181, PMID 32416561.

Wang Q, Alshaker H, Bohler T, Srivats S, Chao Y, Cooper C. Core shell lipid polymer hybrid nanoparticles with combined docetaxel and molecular targeted therapy for the treatment of metastatic prostate cancer. Sci Rep. 2017;7(1):5901. doi: 10.1038/s41598-017-06142-x, PMID 28724986.

Wang Z, Zang A, Wei Y, An L, Hong D, Shi Y. Hyaluronic acid capped irinotecan and gene co-loaded lipid polymer hybrid nanocarrier based combination therapy platform for colorectal cancer. Drug Des Devel Ther. 2020;14:1095-105. doi: 10.2147/DDDT.S230306, PMID 32210538.

Giram PS, Nimma R, Bulbule A, Yadav AS, Gorain M, Venkata Radharani NN. Engineered PLGA core lipid shell hybrid nanocarriers improve the efficacy and safety of irinotecan to combat colon cancer. ACS Biomater Sci Eng. 2024;10(10):6661-76. doi: 10.1021/acsbiomaterials.4c01260, PMID 39269431.

Cong X, Chen J, Xu R. Recent progress in bio-responsive drug delivery systems for tumor therapy. Front Bioeng Biotechnol. 2022;10:916952. doi: 10.3389/fbioe.2022.916952, PMID 35845404.

Published

07-07-2025

How to Cite

KAILAS, A. A., RAMA, A., LADANI, B., GOVINDAN, I., ABUTWAIBE, K. A., & NAHA, A. (2025). LIPID-POLYMER HYBRID NANOPARTICLES AND SILICA-BASED HYBRID NANOPARTICLES FOR CANCER TREATMENT. International Journal of Applied Pharmaceutics, 17(4), 38–50. https://doi.org/10.22159/ijap.2025v17i4.53823

Issue

Section

Review Article(s)

Similar Articles

<< < 122 123 124 

You may also start an advanced similarity search for this article.