SCREENING AND CHARACTERIZATION OF FAVIPIRAVIR-LOADED NANOSTRUCTURED LIPID CARRIER FORMULATIONS BY USING A 26-2 FRACTIONAL FACTORIAL DESIGN
DOI:
https://doi.org/10.22159/ijap.2025v17i4.53891Keywords:
Favipiravir, Nanostructured lipid carriers, Quality by design, Screening formulationAbstract
Objective: Favipiravir (FVP), an RNA-dependent RNA polymerase inhibitor with low solubility and bioavailability, was encapsulated and optimized into Nanostructured Lipid Carriers (NLC) to improve solubility and control its release profile.
Methods: The FVP-NLC formulation was screened using a 26-2 fractional factorial design with 6 critical parameters at 2 levels, which were solid lipid combination (Glyceryl Monostearate (GMS) and combination with Cetyl Alcohol (CA) (1:1)), liquid lipid combination (Medium-Chain Triglycerides (MCT) oils and combination with Ethyl Oleate (EO) (1:1)), solid to liquid lipid ratio (70:30 to 90:10), concentrations of total lipid (2-5% w/v), surfactant (Tween® 80, 2-5% w/v), and co-surfactant (Labrasol®, 1-2% w/v). Sixteen formulas were obtained. FVP-NLC was fabricated using high-shear homogenization (12,000 rpm for 10 min), tandem ultrasonication (amplitude 40% for 5 min), followed by characterization of particle size, polydispersity index, zeta potential, and entrapment efficiency. The optimum formula was further evaluated for in vitro release and kinetics study, as well as short-term stability study under refrigerator (5±3 °C), room temperature (25±2 °C, 60±5% RH), and climatic chamber (40±2 °C, 75±5% RH) for 15 d.
Results: The major contributions of parameters were total lipid (32%), co-surfactant concentration (30%), and solid lipid combination (15%). The best formulation was F3 with total lipid 2% w/v, co-surfactant 2% w/v, and GMS showing small particle size (124.1±1.8 nm), polydispersity index (0.1387±0.0043), and zeta potential (-39.06±2.00 mV), with high entrapment efficiency (85.97±0.06% w/v). In vitro release from F3 demonstrated controlled release with diffusion mechanisms for up to 24 h at pH 7.4, following Korsmeyer-Peppas kinetics (R² = 0.9171, n = 0.231). In addition, the short-term stability study revealed that F3 has consistent physicochemical properties for 15 d in all conditions.
Conclusion: The 26-2 fractional factorial design has been successfully utilized in screening FVP-NLC formulation to incorporate FVP into the NLC matrix system.
References
Hashemian SM, Farhadi T, Velayati AA. A review on favipiravir: the properties function and usefulness to treat COVID-19. Expert Rev Anti Infect Ther. 2021;19(8):1029-37. doi: 10.1080/14787210.2021.1866545, PMID 33372567.
Joshi S, Parkar J, Ansari A, Vora A, Talwar D, Tiwaskar M. Role of favipiravir in the treatment of COVID-19. Int J Infect Dis. 2021 Jan;102:501-8. doi: 10.1016/j.ijid.2020.10.069, PMID 33130203.
Goktug O, Altas E, Kayar G, Gokalp M. The development and the validation of a novel dissolution method of favipiravir film coated tablets. Sci Pharm. 2021;90(1):3. doi: 10.3390/scipharm90010003.
Timur SS, Atasoglu M, Oner Y, Karabulut TC, Eroglu H. In vitro studies for BCS classification of an antiviral agent favipiravir. J Res Pharm. 2021;25(6):944-52. doi: 10.29228/jrp.91.
Mahaparale SP. Development and evaluation of favipiravir agglomerates for direct compression by crystallo-co-agglomeration technique. Int J Pharm Sci Res. 2023;14(1):924-33. doi: 10.13040/IJPSR.0975-8232.14(2).924-33.
Jafar G, Abdassah M, Rusdiana T, Khairunisa R. Development and characterization of precirol ato 88 base in nanostructured lipid carriers (NLC) formulation with the probe sonication method. Int J Appl Pharm. 2021;13(3):43-6. doi: 10.22159/ijap.2021.v13s3.08.
Abdi Syahputra R, Dalimunthe A, Utari ZD, Halim P, Sukarno MA, Zainalabidin S. Nanotechnology and flavonoids: current research and future perspectives on cardiovascular health. J Funct Foods. 2024;120:106355. doi: 10.1016/j.jff.2024.106355.
Ramachandran KM, Tsokos CP. Chapter 9. Design of experiments. In: Ramachandran KM, Tsokos CP, editors. Mathematical statistics with applications in R. 2nd ed. Cambridge: Elsevier; 2015. p. 459-94. doi: 10.1016/B978-0-12-417113-8.00009-6.
Beg S. Response surface designs and their applications in pharmaceutical development. In: Beg S, editor. Design of experiments for pharmaceutical product development. Vol. I. Singapore: Springer; 2021. p. 27-41. doi: 10.1007/978-981-33-4717-5_3.
Mall J, Naseem N, Haider MF, Rahman MA, Khan S, Siddiqui SN. Nanostructured lipid carriers as a drug delivery system: a comprehensive review with therapeutic applications. Intelligent Pharmacy. 2024. doi: 10.1016/j.ipha.2024.09.005.
Gunawan M, Boonkanokwong V. Current applications of solid lipid nanoparticles and nanostructured lipid carriers as vehicles in oral delivery systems for antioxidant nutraceuticals: a review. Colloids Surf B Biointerfaces. 2024 Jan;233:113608. doi: 10.1016/j.colsurfb.2023.113608, PMID 37925866.
Elmowafy M, Al Sanea MM. Nanostructured lipid carriers (NLCs) as drug delivery platform: advances in formulation and delivery strategies. Saudi Pharm J. 2021;29(9):999-1012. doi: 10.1016/j.jsps.2021.07.015, PMID 34588846.
Ortiz AC, Yanez O, Salas Huenuleo E, Morales JO. Development of a nanostructured lipid carrier (nlc) by a low energy method comparison of release kinetics and molecular dynamics simulation. Pharmaceutics. 2021;13(4):531. doi: 10.3390/pharmaceutics13040531, PMID 33920242.
Heade J, Maher S, Bleiel SB, Brayden DJ. Labrasol® and salts of medium chain fatty acids can be combined in low concentrations to increase the permeability of a macromolecule marker across isolated rat intestinal mucosae. J Pharm Sci. 2018;107(6):1648-55. doi: 10.1016/j.xphs.2018.02.012, PMID 29462634.
Ma L, Wei Y, Zhou Y, Ma X, Wu X. Effects of pluronic F68 and Labrasol on the intestinal absorption and pharmacokinetics of rifampicin in rats. Arch Pharm Res. 2011;34(11):1939-43. doi: 10.1007/s12272-011-1114-z, PMID 22139693.
McCartney F, Jannin V, Chevrier S, Boulghobra H, Hristov DR, Ritter N. Labrasol® is an efficacious intestinal permeation enhancer across rat intestine: ex vivo and in vivo rat studies. J Control Release. 2019;310:115-26. doi: 10.1016/j.jconrel.2019.08.008, PMID 31401199.
Duong VA, Nguyen TT, Maeng HJ. Preparation of solid lipid nanoparticles and nanostructured lipid carriers for drug delivery and the effects of preparation parameters of solvent injection method. Molecules. 2020;25(20):4781. doi: 10.3390/molecules25204781, PMID 33081021.
Li Q, Cai T, Huang Y, Xia X, Cole SP, Cai Y. A review of the structure preparation and application of NLCs, PNPs, and PLNs. Nanomaterials (Basel). 2017;7(6):122. doi: 10.3390/nano7060122, PMID 28554993, PMCID PMC5485769.
Takechi Haraya Y, Ohgita T, Demizu Y, Saito H, Izutsu KI, Sakai Kato K. Current status and challenges of analytical methods for evaluation of size and surface modification of nanoparticle based drug formulations. AAPS PharmSciTech. 2022;23(5):150. doi: 10.1208/s12249-022-02303-y, PMID 35596094.
Ross Hallett F. Particle size analysis by dynamic light scattering. Food Res Int. 1994;27(2):195-8. doi: 10.1016/0963-9969(94)90162-7.
Gope Edward R, Srikanth P, Suneetha Y. Novel ultra performance liquid chromatography method for concurrent estimation and pharmacokinetic analysis of favipiravir and molnupiravir in rat plasma. Asian J Pharm Clin Res. 2025;18(2):90-5. doi: 10.22159/ajpcr.2025v18i2.53662.
Almousallam M, Moia C, Zhu H. Development of nanostructured lipid carrier for dacarbazine delivery. Int Nano Lett. 2015;5(4):241-8. doi: 10.1007/s40089-015-0161-8.
Shah NV, Seth AK, Balaraman R, Aundhia CJ, Maheshwari RA, Parmar GR. Nanostructured lipid carriers for oral bioavailability enhancement of raloxifene: design and in vivo study. J Adv Res. 2016;7(3):423-34. doi: 10.1016/j.jare.2016.03.002, PMID 27222747.
Eedara BB, Bastola R, Das SC. Dissolution and absorption of inhaled drug particles in the lungs. Pharmaceutics. 2022;14(12):2667. doi: 10.3390/pharmaceutics14122667, PMID 36559160, PMCID PMC9781681.
Nokhodchi A, Chavan S, Ghafourian T. In vitro dissolution and permeability testing of inhalation products: challenges and advances. Pharmaceutics. 2023;15(3):983. doi: 10.3390/pharmaceutics15030983, PMID 36986844, PMCID PMC10059005.
Bruschi ML. Chapter 5. Mathematical models of drug release. In: Strategies to modify the drug release from pharmaceutical systems. Woodhead Publishing; 2015. p. 63-86.
Trucillo P. Drug carriers: a review on the most used mathematical models for drug release. Processes. 2022;10(6):1094. doi: 10.3390/pr10061094.
Mircioiu C, Voicu V, Anuta V, Tudose A, Celia C, Paolino D. Mathematical modeling of release kinetics from supramolecular drug delivery systems. Pharmaceutics. 2019;11(3):140. doi: 10.3390/pharmaceutics11030140, PMID 30901930, PMCID PMC6471682.
Unnisa A, Chettupalli AK, Alazragi RS, Alelwani W, Bannunah AM, Barnawi J. Nanostructured lipid carriers to enhance the bioavailability and solubility of ranolazine: statistical optimization and pharmacological evaluations. Pharmaceuticals (Basel). 2023;16(8):1151. doi: 10.3390/ph16081151, PMID 37631066.
Garg NK, Tandel N, Bhadada SK, Tyagi RK. Nanostructured lipid carrier mediated transdermal delivery of aceclofenac hydrogel present an effective therapeutic approach for inflammatory diseases. Front Pharmacol. 2021;12:713616. doi: 10.3389/fphar.2021.713616, PMID 34616297, PMCID PMC8488093.
Azhar Shekoufeh Bahari L, Hamishehkar H. The impact of variables on particle size of solid lipid nanoparticles and nanostructured lipid carriers; a comparative literature review. Adv Pharm Bull. 2016;6(2):143-51. doi: 10.15171/apb.2016.021, PMID 27478775, PMCID PMC4961971.
Zirak M, Pezeshki A. Effect of surfactant concentration on the particle size, stability and potential zeta of beta carotene nano lipid carrier. Int J Curr Microbiol Appl Sci. 2015;4(9):924-32.
Houacine C, Adams D, Singh KK. Impact of liquid lipid on development and stability of trimyristin nanostructured lipid carriers for oral delivery of resveratrol. J Mol Liq. 2020;316:113734. doi: 10.1016/j.molliq.2020.113734.
Zingale E, Rizzo S, Bonaccorso A, Consoli V, Vanella L, Musumeci T. Optimization of lipid nanoparticles by response surface methodology to improve the ocular delivery of diosmin: characterization and in vitro anti-inflammatory assessment. Pharmaceutics. 2022;14(9):1961. doi: 10.3390/pharmaceutics14091961, PMID 36145708.
Sakellari GI, Zafeiri I, Batchelor H, Spyropoulos F. Formulation design production and characterisation of solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) for the encapsulation of a model hydrophobic active. Food Hydrocoll Health. 2021;1:100024. doi: 10.1016/j.fhfh.2021.100024, PMID 35028634, PMCID PMC8721956.
Badawi N, El Say K, Attia D, El Nabarawi M, Elmazar M, Teaima M. Development of pomegranate extract loaded solid lipid nanoparticles: quality by design approach to screen the variables affecting the quality attributes and characterization. ACS Omega. 2020;5(34):21712-21. doi: 10.1021/acsomega.0c02618, PMID 32905321, PMCID PMC7469390.
Apostolou M, Assi S, Fatokun AA, Khan I. The effects of solid and liquid lipids on the physicochemical properties of nanostructured lipid carriers. J Pharm Sci. 2021;110(8):2859-72. doi: 10.1016/j.xphs.2021.04.012, PMID 33901564.
Chinsriwongkul A, Chareanputtakhun P, Ngawhirunpat T, Rojanarata T, Sila on W, Ruktanonchai U. Nanostructured lipid carriers (NLC) for parenteral delivery of an anticancer drug. AAPS PharmSciTech. 2012;13(1):150-8. doi: 10.1208/s12249-011-9733-8, PMID 22167418, PMCID PMC3299450.
Nemeth Z, Csoka I, Semnani Jazani R, Sipos B, Haspel H, Kozma G. Quality by design driven zeta potential optimisation study of liposomes with charge imparting membrane additives. Pharmaceutics. 2022;14(9):1798. doi: 10.3390/pharmaceutics14091798, PMID 36145546, PMCID PMC9503861.
Hyun JE, Yi HY, Hong GP, Chun JY. Digestion stability of curcumin loaded nanostructured lipid carrier. LWT. 2022;162:2022.113474. doi: 10.1016/j.lwt.2022.113474.
Marzouk HM, Rezk MR, Gouda AS, Abdel Megied AM. A novel stability indicating HPLC-DAD method for determination of favipiravir a potential antiviral drug for COVID-19 treatment; application to degradation kinetic studies and in vitro dissolution profiling. Microchem J. 2022 Jan;172:106917. doi: 10.1016/j.microc.2021.106917, PMID 34667334, PMCID PMC8518200.
Agrawal M, Saraf S, Pradhan M, Patel RJ, Singhvi G, Ajazuddin. Design and optimization of curcumin loaded nano lipid carrier system using box-behnken design. Biomed Pharmacother. 2021;141:111919. doi: 10.1016/j.biopha.2021.111919, PMID 34328108.
Elkhayat D, Abdelmalak NS, Amer R, Awad HH. Ezetimibe loaded nanostructured lipid carrier for oral delivery: response surface methodology; in vitro characterization and assessing the antihyperlipidemic effect in rats. ACS Omega. 2024;9(7):8103-16. doi: 10.1021/acsomega.3c08428, PMID 38405515.
Ainurofiq A, Choiri S. Model and release pattern of water soluble drug from natural polymer based sustained release tablet dosage form. Int J Pharm Pharm Sci. 2014;6(9):179-82.
Arbain NH, Salim N, Masoumi HR, Wong TW, Basri M, Abdul Rahman MB. In vitro evaluation of the inhalable quercetin loaded nanoemulsion for pulmonary delivery. Drug Deliv Transl Res. 2019;9(2):497-507. doi: 10.1007/s13346-018-0509-5, PMID 29541999.
Ahalwat S, Bhatt DC. Development of novel lipid matrix for improved sustained release effect of a hydrophilic drug via response surface methodology. J Drug Deliv Sci Technol. 2022 Jan;67:102993. doi: 10.1016/j.jddst.2021.102993.
Shah J, Patel S, Bhairy S, Hirlekar R. Formulation optimization characterization and in vitro anti-cancer activity of curcumin loaded nanostructured lipid carriers. Int J Curr Pharm Res. 2022;14(1):31-43. doi: 10.22159/ijcpr.2022v14i1.44110.
Makoni PA, Wa Kasongo K, Walker RB. Short term stability testing of efavirenz loaded solid lipid nanoparticle (SLN) and nanostructured lipid carrier (NLC) dispersions. Pharmaceutics. 2019;11(8):397. doi: 10.3390/pharmaceutics11080397, PMID 31398820.
Published
How to Cite
Issue
Section
Copyright (c) 2025 MAXIUS GUNAWAN, DAVID G. FERNIG, VEERAKIET BOONKANOKWONG

This work is licensed under a Creative Commons Attribution 4.0 International License.