FORMULATION AND EVALUATION OF NANO FORMULATION OF BTK INHIBITOR BY BOX-BEHNKEN DESIGN AND HIGH-PRESSURE HOMOGENIZATION FOR ENHANCED BIOAVAILABILITY AND REDUCING THE EFFECTS OF FOOD

Authors

  • S. SREENIVASA CHARY Bir Tikandrajit University, Canchipur, Imphal West-795003, Manipur, India
  • D. V. R. N. BHIKSHAPATHI Bir Tikandrajit University, Canchipur, Imphal West-795003, Manipur, India. Teegala Ram Reddy College of Pharmacy, Meerpet, Hyderabad–500097, India https://orcid.org/0000-0002-5521-2137
  • V. V. RAJESHAM Department of Pharmacology, CMR College of Pharmacy, Kandlakoya (V) Medchal (M&D), Hyderabad-501401, Telangana, India
  • SAILAJA RAO PENAKALAPATI Teegala Ram Reddy College of Pharmacy, Meerpet, Hyderabad–500097, India
  • PAMU SANDHYA Shadan Women’s College of Pharmacy, Khairatabad, Hyderabad-500004, Telangana, India
  • RUBESH KUMAR SADASIVAM Teegala Ram Reddy College of Pharmacy, Meerpet, Hyderabad–500097, India

DOI:

https://doi.org/10.22159/ijap.2025v17i4.54079

Keywords:

Ibrutinib, Nanosuspension, HPMC E15, Poloxamer 188, Bioavailability

Abstract

Objective: The study aims to enhance the solubility and oral bioavailability of the poorly soluble drug Ibrutinib (IBR), a type IV irreversible kinase inhibitor, using Nanosuspension (NS) as a formulation strategy. The study also evaluates the ability of NS to minimize fasted-fed variability and improve drug absorption.

Methods: NS was prepared using High-Pressure Homogenization (HPH) and optimized with a Box-Behnken design. Poloxamer 188 and Hydroxypropyl Methylcellulose (HPMC E-15) were used as stabilizers to prevent particle aggregation. A comprehensive evaluation of the formulation was conducted, including particle size analysis, zeta potential measurement, Scanning Electron Microscopy (SEM) for shape determination, drug-excipient interactions, in vitro dissolution studies, and in vivo pharmacokinetic assessments in both fed and fasting conditions.

Results: The particle size of the optimized NS ranged from 134.6 to 214.0 nm, with polydispersity indices between 0.189 and 0.56, indicating a uniform size distribution. SEM confirmed the nanosized particles with a stable morphology. IBR-NS exhibited an 18.45-fold increase in solubility compared to pure IBR, reducing precipitation and enhancing intestinal absorption. Pharmacokinetic studies demonstrated a 3.05-fold increase in concentration max and a 3.97-fold increase in area under the curve0–t under both fed and fasting conditions. Notable differences in pharmacokinetics between the fed and fasted states were observed, supporting improved drug absorption.

Conclusion: The study confirms that NS is a promising approach for improving IBR solubility and bioavailability. The NS formulation effectively reduces fasted-fed variability, enhances intestinal absorption, and holds potential for better therapeutic outcomes.

References

Aher SS, Malsane ST, Saudagar RB. Nanosuspension: an overview. Int J Curr Pharm Sci. 2017;9(3):19-23. doi: 10.22159/ijcpr.2017.v9i3.19584.

Masso Valles D, Jauset T, Soucek L. Ibrutinib repurposing: from B-cell malignancies to solid tumors. Oncoscience. 2016 May-Jun;3(5-6):147-8. doi: 10.18632/oncoscience.310, PMID 27489860.

Shakeel F, Iqbal M, Ezzeldin E. Bioavailability enhancement and pharmacokinetic profile of an anticancer drug ibrutinib by self nanoemulsifying drug delivery system. J Pharm Pharmacol. 2016 Jun;68(6):772-80. doi: 10.1111/jphp.12550, PMID 27018771.

De Jong J, Sukbuntherng J, Skee D, Murphy J, OBrien S, Byrd JC. The effect of food on the pharmacokinetics of oral ibrutinib in healthy participants and patients with chronic lymphocytic leukemia. Cancer Chemother Pharmacol. 2015 May;75(5):907-16. doi: 10.1007/s00280-015-2708-9, PMID 25724156.

Vidyadhari J, Gayatriramya M, Durga SP, Pavani P, Rajesh K. Nanosuspensions: a strategy to increase the solubility and bioavailability of poorly water soluble drugs. Asian J Pharm Clin Res. 2023 May;16(5):33-40. doi: 10.22159/ajpcr.2023.v16i5.46617.

Rangaraj N, Pailla SR, Chowta P, Sampathi S. Fabrication of Ibrutinib nanosuspension by quality by design approach: intended for enhanced oral bioavailability and diminished fast fed variability. AAPS PharmSciTech. 2019 Aug;20(8):326. doi: 10.1208/s12249-019-1524-7, PMID 31659558.

Rangaraj N, Pailla SR, Shah S, Prajapati S, Sampathi S. QbD aided development of ibrutinib loaded nanostructured lipid carriers aimed for lymphatic targeting: evaluation using chylomicron flow blocking approach. Drug Deliv Transl Res. 2020 Oct;10(5):1476-94. doi: 10.1007/s13346-020-00803-7, PMID 32519202.

Sowmya C, Suriyaprakaash KK, Abrar AH. Solid lipid nanoparticles: modern progress in nose to brain transduction. Int J Appl Pharm. 2023 Apr;15(4):20-6. doi: 10.22159/ijap.2023v15i4.47897.

Gera S, Talluri S, Rangaraj N, Sampathi S. Formulation and evaluation of naringenin nanosuspensions for bioavailability enhancement. AAPS PharmSciTech. 2017 Dec;18(8):3151-62. doi: 10.1208/s12249-017-0790-5, PMID 28534300.

Khalifa NE, Nur AO, Osman ZA. Artemether loaded ethyl cellulose nano suspensions: effects of formulation variables physical stability and drug release profile. Int J Pharm Pharm Sci. 2017 Jun;9(6):90-6. doi: 10.22159/ijpps.2017v9i6.18321.

Reddy KS, Bhikshapathi D. Design and optimization of DPC-crosslinked HPβCD nanosponges for entrectinib oral delivery: formulation characterization and pharmacokinetic studies. Futur J Pharm Sci. 2024 Mar;10(1):101. doi: 10.1186/s43094-024-00680-8.

Palanati M, Bhikshapathi DV. Development characterization and evaluation of entrectinib nanosponges loaded tablets for oral delivery. Int J App Pharm. 2023 Nov-Dec;15(6):269-81. doi: 10.22159/ijap.2023v15i6.49022.

Laxmi BV, Bhikshapathi D, Sailaja Rao P. Optimization and enhancement of oral bioavailability of dabrafenib as nanobubbles using quality by design approach. PharmSci. 2025 Jan;31(1):74-88. doi: 10.34172/PS.2024.31.

Pailla SR, Talluri S, Rangaraj N, Ramavath R, Challa VS, Doijad N. Intranasal zotepine nanosuspension: intended for improved brain distribution in rats. Daru. 2019 Jun;27(2):541-56. doi: 10.1007/s40199-019-00281-4, PMID 31256410.

Sunitha S, Rakesh A, Sujatha Dodoala D, Vijaya K. Biodegradable polymeric nanocarriers for oral delivery of antiretroviral drug: pharmacokinetic and in vitro permeability studies. J Appl Pharm Sci. 2021 Apr;11(4):28-39. doi: 10.7324/JAPS.2021.110405.

Liu D, Pan H, He F, Wang X, Li J, Yang X. Effect of particle size on oral absorption of carvedilol nanosuspensions: in vitro and in vivo evaluation. Int J Nanomedicine. 2015 Oct;10:6425-34. doi: 10.2147/IJN.S87143, PMID 26508852.

Sahu BP, Das MK. Nanosuspension for enhancement of oral bioavailability of felodipine. Appl Nanosci. 2014 Jun;4(2):189-97. doi: 10.1007/s13204-012-0188-3.

Verma S, Gokhale R, Burgess DJ. A comparative study of top down and bottom up approaches for the preparation of micro/nanosuspensions. Int J Pharm. 2009 Sep;380(1-2):216-22. doi: 10.1016/j.ijpharm.2009.07.005, PMID 19596059.

Singh A, Neupane YR, Panda BP, Kohli K. Lipid Based nanoformulation of lycopene improves oral delivery: formulation optimization ex vivo assessment and its efficacy against breast cancer. J Microencapsul. 2017 Jul;34(4):416-29. doi: 10.1080/02652048.2017.1340355, PMID 28595495.

Wang Y, Ma Y, Zheng Y, Song J, Yang X, Bi C. In vitro and in vivo anticancer activity of a novel puerarin nanosuspension against colon cancer with high efficacy and low toxicity. Int J Pharm. 2013 Oct;441(1-2):728-35. doi: 10.1016/j.ijpharm.2012.10.021, PMID 23089583.

Chen Z, Zhai J, Liu X, Mao S, Zhang L, Rohani S. Solubility measurement and correlation of the form a of ibrutinib in organic solvents from 278.15 to 323.15 K. J Chem Thermodyn. 2016 Nov;103:342-8. doi: 10.1016/j.jct.2016.08.034.

Celebi N, Gulbag Pinar S. Optimization and evaluation of cyclosporine a nanosuspension stabilized by combination stabilizers using high pressure homogenization method. Sanat. 2019;23(6):1009-21. doi: 10.35333/jrp.2019.65.

Lalatsa A, Schatzlein AG, Mazza M, Le TB, Uchegbu IF. Amphiphilic poly (L-amino acids) new materials for drug delivery. J Control Release. 2012 Jul;161(2):523-36. doi: 10.1016/j.jconrel.2012.04.046, PMID 22613882.

Lee J, Lee SJ, Choi JY, Yoo JY, Ahn CH. Amphiphilic amino acid copolymers as stabilizers for the preparation of nanocrystal dispersion. Eur J Pharm Sci. 2005 Jul;24(5):441-9. doi: 10.1016/j.ejps.2004.12.010, PMID 15784334.

Jacob S, Nair AB, Shah J. Emerging role of nanosuspensions in drug delivery systems. Biomater Res. 2020 Apr;24:3. doi: 10.1186/s40824-020-0184-8, PMID 31969986.

Dizaj SM, Vazifehasl Zh, Salatin S, Adibkia Kh, Javadzadeh Y. Nanosizing of drugs: effect on dissolution rate. Res Pharm Sci. 2015 Jun;10(2):95-108. doi: 10.4103/1735-5362.155641, PMID 26487886.

Hao J, Gao Y, Zhao J, Zhang J, Li Q, Zhao Z. Preparation and optimization of resveratrol nanosuspensions by antisolvent precipitation using box-behnken design. AAPS PharmSciTech. 2015;16(1):118-28. doi: 10.1208/s12249-014-0211-y, PMID 25209687.

Published

07-07-2025

How to Cite

CHARY, S. S., BHIKSHAPATHI, D. V. R. N., RAJESHAM, V. V., PENAKALAPATI, S. R., SANDHYA, P., & SADASIVAM, R. K. (2025). FORMULATION AND EVALUATION OF NANO FORMULATION OF BTK INHIBITOR BY BOX-BEHNKEN DESIGN AND HIGH-PRESSURE HOMOGENIZATION FOR ENHANCED BIOAVAILABILITY AND REDUCING THE EFFECTS OF FOOD. International Journal of Applied Pharmaceutics, 17(4), 521–528. https://doi.org/10.22159/ijap.2025v17i4.54079

Issue

Section

Original Article(s)

Similar Articles

1 2 3 4 5 > >> 

You may also start an advanced similarity search for this article.