QUALITY BY DESIGN ASSOCIATED IBRUTINIB LOADED NANOSUSPENSION FOR AMELIORATED DISSOLUTION USING NANO BALL MILLING AND SPRAY DRYING METHODS

Authors

  • VALLABH DEULKAR Department of Pharmaceutics, GITAM School of Pharmacy, Hyderabad Campus, GITAM (Deemed to be University), India
  • RAGHUVEER PATHURI Department of Pharmaceutics, GITAM School of Pharmacy, Hyderabad Campus, GITAM (Deemed to be University), India https://orcid.org/0000-0001-5918-1393

DOI:

https://doi.org/10.22159/ijap.2025v17i4.54129

Keywords:

Hypromellose, Ibrutinib, Fast fed variability, Nanosuspension, Nano-Ball mill, Sodium lauryl sulfate

Abstract

Objective: The aim of the present work was to enhance the solubility, reduce fast-fed variability, and increase the oral bioavailability of Ibrutinib (IBR), a Biopharmaceutical Classification System (BCS) class II drug, through the development of a Nanosuspension (NS) formulation.

Methods: Ibrutinib Nanosuspension (IBR NS) was formulated using a three-factor, three-level Box-Behnken Design (BBD). The NS was prepared using a nano ball mill followed by spray drying, with Hypromellose and sodium lauryl sulfate as stabilizers. The particle size and Polydispersity Index (PDI) were measured, and the role of Vitamin E D-α-Tocopheryl Polyethylene Glycol 1000 Succinate (TPGS) as a stabilizer was evaluated. The formulation was characterized using Scanning Electron Microscopy (SEM), X-Ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), and Differential Scanning Calorimetry (DSC). Stability studies were conducted over a 90-day storage period.

Results: The particle size of the NS after nano ball milling ranged from 294.53 to 408.83 nm, with PDI values between 0.075 and 0.278. After spray drying with Vitamin E TPGS, the particle size was further reduced to 135.6 nm. SEM images confirmed the presence of distinct spherical nanoparticles. XRD, FTIR, and DSC studies demonstrated excellent compatibility between the drug and the stabilizers. The formulation remained stable over 90 days of storage. The solubility of IBR NS increased by 12.96-fold compared to the plain drug. In dissolution medium,>94% drug release was achieved within 2 h compared to 63% for plain IBR. Structural characterization confirmed amorphization and compatibility.

Conclusion: The developed IBR NS significantly enhanced solubility, reduced fast-fed variability, and improved oral bioavailability. The use of Hypromellose, sodium lauryl sulfate, and Vitamin E TPGS as stabilizers proved effective in achieving a stable and optimized formulation. This approach holds promise for improving the delivery of poorly soluble drugs like IBR.

References

Mehmood Y, Shahid H, Abbas M, Farooq U, Alshehri S, Alam P. Developing nanosuspension loaded with azelastine for potential nasal drug delivery: determination of proinflammatory interleukin IL-4 mRNA expression and industrial scale-up strategy. ACS Omega. 2023 Jun 21;8(26):23812-24. doi: 10.1021/acsomega.3c02186, PMID 37426214.

Debela DT, Muzazu SG, Heraro KD, Ndalama MT, Mesele BW, Haile DC. New approaches and procedures for cancer treatment: current perspectives. Sage Open Med. 2021 Aug 12;9:20503121211034366. doi: 10.1177/20503121211034366, PMID 34408877.

Nikolaou M, Pavlopoulou A, Georgakilas AG, Kyrodimos E. The challenge of drug resistance in cancer treatment: a current overview. Clin Exp Metastasis. 2018 Aug;35(4):309-18. doi: 10.1007/s10585-018-9903-0, PMID 29799080.

Robinson K, Tiriveedhi V. Perplexing role of P-glycoprotein in tumor microenvironment. Front Oncol. 2020 Feb 25;10:265. doi: 10.3389/fonc.2020.00265, PMID 32195185.

Jahan N, Kousar F, Rahman KU, Touqeer SI, Abbas N. Development of nanosuspension of artemisia absinthium extract as novel drug delivery system to enhance its bioavailability and hepatoprotective potential. J Funct Biomater. 2023 Aug 18;14(8):433. doi: 10.3390/jfb14080433, PMID 37623677.

He C, Sun Z, Hoffman RM, Yang Z, Jiang Y, Wang L. P-glycoprotein overexpression is associated with cisplatin resistance in human osteosarcoma. Anticancer Res. 2019 Apr;39(4):1711-8. doi: 10.21873/anticanres.13277, PMID 30952710.

Vidyadhari J, Gayatriramya M, Durga SP, Pavani P, Rajesh K. Nanosuspensions: a strategy to increase the solubility and bioavailability of poorly water-soluble drugs. Asian J Pharm Clin Res. 2023 May;16(5):33-40. doi: 10.22159/ajpcr.2023.v16i5.46617.

Smith MR. Ibrutinib in B lymphoid malignancies. Expert Opin Pharmacother. 2015 Aug;16(12):1879-87. doi: 10.1517/14656566.2015.1067302, PMID 26165513.

Khalifa NE, Nur AO, Osman ZA. Artemether loaded ethyl cellulose nanosuspensions: effects of formulation variables physical stability and drug release profile. Int J Pharm Pharm Sci. 2017 Jun;9(6):90-6. doi: 10.22159/ijpps.2017v9i6.18321.

Shakeel F, Iqbal M, Ezzeldin E. Bioavailability enhancement and pharmacokinetic profile of an anticancer drug ibrutinib by self-nanoemulsifying drug delivery system. J Pharm Pharmacol. 2016 Jun;68(6):772-80. doi: 10.1111/jphp.12550, PMID 27018771.

Davids MS, Brown JR. Ibrutinib: a first-in-class covalent inhibitor of bruton’s tyrosine kinase. Future Oncol. 2014 Jun;10(6):957-67. doi: 10.2217/fon.14.51, PMID 24941982.

Aher SS, Malsane ST, Saudagar RB. Nanosuspension: an overview. Int J Curr Pharm Sci. 2017;9(3):19-23. doi: 10.22159/ijcpr.2017.v9i3.19584.

Sarkar P, Das S, Majee SB. Biphasic dissolution model: novel strategy for developing discriminatory in vivo predictive dissolution model for BCS class II drugs. Int J Pharm Pharm Sci. 2022 Apr;14(4):20-7. doi: 10.22159/ijpps.2022v14i4.44042.

Rangaraj N, Pailla SR, Shah S, Prajapati S, Sampathi S. QbD aided development of ibrutinib loaded nanostructured lipid carriers aimed for lymphatic targeting: evaluation using chylomicron flow blocking approach. Drug Deliv Transl Res. 2020 Oct;10(5):1476-94. doi: 10.1007/s13346-020-00803-7, PMID 32519202.

Mehata AK, Setia A, Vikas, Malik AK, Hassani R, Dailah HG. Vitamin E TPGS-based nanomedicine nanotheranostics and targeted drug delivery: past present and future. Pharmaceutics. 2023 Mar;15(3):722. doi: 10.3390/pharmaceutics15030722, PMID 36986583.

Kesisoglou F, Mitra A. Crystalline nanosuspensions as potential toxicology and clinical oral formulations for BCS II/IV compounds. AAPS J. 2012 Dec;14(4):677-87. doi: 10.1208/s12248-012-9383-0, PMID 22736294.

Mothilal M, Chaitanya KM, Surya Teja SP, Manimaran V, Damodharan N. Formulation and evaluation of naproxen eudragit RS 100 nanosuspension using 32 factorial design. Int J Pharm Pharm Sci. 2014 Jul;6(7):449-55.

Yu LX, Amidon G, Khan MA, Hoag SW, Polli J, Raju GK. Understanding pharmaceutical quality by design. AAPS J. 2014 Oct;16(4):771-83. doi: 10.1208/s12248-014-9598-3, PMID 24854893.

Wang Y, Zheng Y, Zhang L, Wang Q, Zhang D. Stability of nanosuspensions in drug delivery. J Control Release. 2013 Nov 28;172(3):1126-41. doi: 10.1016/j.jconrel.2013.08.006, PMID 23954372.

Andrade Da Silva LH, Vieira JB, Cabral MR, Antunes MA, Lee D, Cruz FF. Development of nintedanib nanosuspension for inhaled treatment of experimental silicosis. Bioeng Transl Med. 2023;8(2):e10401. doi: 10.1002/btm2.10401, PMID 36925690.

Verma S, Kumar S, Gokhale R, Burgess DJ. Physical stability of nanosuspensions: investigation of the role of stabilizers on ostwald ripening. Int J Pharm. 2011 Jan 17;406(1-2):145-52. doi: 10.1016/j.ijpharm.2010.12.027, PMID 21185926.

Dong Z, Wang R, Wang M, Meng Z, Wang X, Han M. Preparation of naringenin nanosuspension and its antitussive and expectorant effects. Molecules. 2022 Jan 24;27(3):741. doi: 10.3390/molecules27030741, PMID 35164006.

Pınar SG, Canpınar H, Tan C, Celebi N. A new nanosuspension prepared with wet milling method for oral delivery of highly variable drug cyclosporine a: development optimization and in vivo evaluation. Eur J Pharm Sci. 2022 Aug 15;171:106123. doi: 10.1016/j.ejps.2022.106123, PMID 35017012.

Amasya G, Aksu B, Badilli U, Onay Besikci A, Tarimci N. QbD guided early pharmaceutical development study: production of lipid nanoparticles by high pressure homogenization for skin cancer treatment. Int J Pharm. 2019 Jun 5;563:110-21. doi: 10.1016/j.ijpharm.2019.03.056, PMID 30935913.

Sampathi S, Prajapati S, Junnuthula V, Dyawanapelly S. Pharmacokinetics and anti-diabetic studies of gliclazide nanosuspension. Pharmaceutics. 2022 Sep;14(9):1947. doi: 10.3390/pharmaceutics14091947, PMID 36145695.

Afifi SA, Hassan MA, Abdelhameed AS, Elkhodairy KA. Nanosuspension: an emerging trend for bioavailability enhancement of etodolac. Int J Polym Sci. 2015;2015:1-16. doi: 10.1155/2015/938594.

Pailla SR, Talluri S, Rangaraj N, Ramavath R, Challa VS, Doijad N. Intranasal zotepine nanosuspension: intended for improved brain distribution in rats. Daru. 2019 Jun;27(2):541-56. doi: 10.1007/s40199-019-00281-4, PMID 31256410.

Sable AA, Kunwar A, Barik A. Alginate and chitosan-based delivery systems for improving the bioavailability and therapeutic efficacy of curcumin. Pharmaceutics. 2024 Mar 19;16(3):423. doi: 10.3390/pharmaceutics16030423, PMID 38543316.

Sampathi S, Haribhau CJ, Kuchana V, Junnuthula V, Dyawanapelly S. Nanosuspension encapsulated chitosan pectin microbeads as a novel delivery platform for enhancing oral bioavailability. Carbohydr Polym. 2023 Nov 1;319:121177. doi: 10.1016/j.carbpol.2023.121177, PMID 37567693.

Liu J, Li S, Ao W, Li Y, Xiao Y, Bai M. Fabrication of an aprepitant nanosuspension using hydroxypropyl chitosan to increase the bioavailability. Biochem Biophys Res Commun. 2022 Nov 26;631:72-7. doi: 10.1016/j.bbrc.2022.09.031, PMID 36179498.

Hashem FM, Abd Allah FI, Abdel Rashid RS, Hassan AA. Glibenclamide nanosuspension inhaler: development in vitro and in vivo assessment. Drug Dev Ind Pharm. 2020 May;46(5):762-74. doi: 10.1080/03639045.2020.1753062, PMID 32250179.

Ugur Kaplan AB, Ozturk N, Cetin M, Vural I, Oznuluer Ozer T. The nanosuspension formulations of daidzein: preparation and in vitro characterization. Turk J Pharm Sci. 2022 Feb 28;19(1):84-92. doi: 10.4274/tjps.galenos.2021.81905, PMID 35227054.

Laxmi BV, Bhikshapathi D, Sailaja Rao P. Optimization and enhancement of oral bioavailability of dabrafenib as nanobubbles using quality by design approach. PharmSci. 2025 Jan;31(1):xx-xx. doi: 10.34172/PS.2024.31.

Reddy KS, Bhikshapathi D, Kumar JP. Unlocking dabrafenib’s potential: a quality by design (QBD) journey to enhance permeation and oral bioavailability through nanosponge formulation. Braz J Pharm Sci. 2025;61:e24209. doi: 10.1590/s2175-97902025e24209.

Palanati M, Bhikshapathi DV. Development characterization and evaluation of entrectinibnanosponges loaded tablets for oral delivery. Int J Appl Pharm. 2023 Nov-Dec;15(6):269-81. doi: 10.22159/ijap.2023v15i6.49022.

Jacob S, Kather FS, Boddu SH, Attimarad M, Nair AB. Nanosuspension innovations: expanding horizons in drug delivery techniques. Pharmaceutics. 2025 Jan 19;17(1):136. doi: 10.3390/pharmaceutics17010136, PMID 39861782.

Tian Y, Wang S, Yu Y, Sun W, Fan R, Shi J. Review of nanosuspension formulation and process analysis in wet media milling using micro hydrodynamic model and emerging characterization methods. Int J Pharm. 2022 Jul 25;623:121862. doi: 10.1016/j.ijpharm.2022.121862, PMID 35671851.

Shi X, Fan B, Zhou X, Chen Q, Shen S, Xing X. Preparation and characterization of ibrutinib amorphous solid dispersions: a discussion of interaction force. J Pharm Innov. 2022 Dec;17(4):1074-83. doi: 10.1007/s12247-021-09585-y.

Elsebay MT, Eissa NG, Balata GF, Kamal MA, Elnahas HM. Nanosuspension: a formulation technology for tackling the poor aqueous solubility and bioavailability of poorly soluble drugs. Curr Pharm Des. 2023;29(29):2297-312. doi: 10.2174/1381612829666230911105922, PMID 37694786.

Chary SS, Bhikshapathi DV, Vamsi NM, Kumar JP. Optimizing entrectinib nanosuspension: quality by design for enhanced oral bioavailability and minimized fast-fed variability. BioNanoScience. 2024 Feb;14(4):4551-69. doi: 10.1007/s12668-024-01462-5.

Published

07-07-2025

How to Cite

DEULKAR, V., & PATHURI, R. . (2025). QUALITY BY DESIGN ASSOCIATED IBRUTINIB LOADED NANOSUSPENSION FOR AMELIORATED DISSOLUTION USING NANO BALL MILLING AND SPRAY DRYING METHODS. International Journal of Applied Pharmaceutics, 17(4), 358–369. https://doi.org/10.22159/ijap.2025v17i4.54129

Issue

Section

Original Article(s)

Similar Articles

<< < 85 86 87 88 89 > >> 

You may also start an advanced similarity search for this article.