METAL–ORGANIC FRAMEWORKS OVERVIEW: STATE OF THE ART

Authors

  • REEM MOHSIN KHALAF AL-UOBODY Department of Pharmacy, Mazaya University College, Thi-Qar, Iraq
  • HAYDER A. HAMMOODI Department of Pharmacy, Mazaya University College, Thi-Qar, Iraq
  • AMIRA AMIN College of Pharmacy, Al-Ayen Iraqi University, Thi-Qar, Iraq

DOI:

https://doi.org/10.22159/ijap.2025v17i4.54159

Keywords:

Metal organic framework, Drug delivery, Zinc, Zeolite, Zirconium

Abstract

Metal-organic Frameworks (MOFs) are believed to be a cluster of complexes, metal ions or groups, synchronized with organic ligands. In addition to durable bonds between inorganic and organic groups, reticular synthesis creates MOFs, perfect election of ingredients of which can generate high thermal and chemical stability. Over the few years, the usage of MOFs in biomedical treatments has significantly increased because of their high loading capacities, high surface areas, and precision tunability. A broad range of drug delivery treatments are being investigated for MOFs. MOFs exhibit high drug loading capacities due to their large area and tunable pore sizes. MOFs were first employed to deliver small-molecule medications, then switched to deliver macromolecules, current developments in this area are needed to support this claim. Here, we examine how MOFs have been used historically for drug delivery, paying particular attention to the various ways that MOFs might be designed for certain drug delivery uses. These choices include drug loading, synthesis technique, and MOF structure. Cellular targeting, biocompatibility, tuning, alterations, and uptake are additional factors to consider. This review's overall goal is to direct MOF design toward innovative biological uses.

References

Betard A, Fischer RA. Metal organic framework thin films: from fundamentals to applications. Chem Rev. 2012;112(2):1055-83. doi: 10.1021/cr200167v, PMID 21928861.

Kitagawa S, Kitaura R, Noro SI. Functional porous coordination polymers. Angew Chem Int Ed Engl. 2004;43(18):2334-75. doi: 10.1002/anie.200300610, PMID 15114565.

Eddaoudi M, Kim J, Rosi N, Vodak D, Wachter J, O Keeffe M. Systematic design of pore size and functionality in isoreticular MOFS and their application in methane storage. Science. 2002;295(5554):469-72. doi: 10.1126/science.1067208, PMID 11799235.

Leus K, Bogaerts T, De Decker J, Depauw H, Hendrickx K, Vrielinck H. Systematic study of the chemical and hydrothermal stability of selected stable metal organic frameworks. Microporous and Mesoporous Materials. 2016 May 15;226:110-6. doi: 10.1016/j.micromeso.2015.11.055.

Han Y, Liu W, Huang J, Qiu S, Zhong H, Liu D. Cyclodextrin-based metal organic frameworks (CD-MOFs) in pharmaceutics and biomedicine. Pharmaceutics. 2018;10(4):271. doi: 10.3390/pharmaceutics10040271, PMID 30545114.

McKinlay AC, Eubank JF, Wuttke S, Xiao B, Wheatley PS, Bazin P. Nitric oxide adsorption and delivery in flexible MIL-88(Fe) metal organic frameworks. Chem Mater. 2013;25(9):1592-9. doi: 10.1021/cm304037x.

Kalmutzki MJ, Hanikel N, Yaghi OM. Secondary building units as the turning point in the development of the reticular chemistry of MOFs. Sci Adv. 2018;4(10):eaat9180. doi: 10.1126/sciadv.aat9180, PMID 30310868.

Liang K, Ricco R, Doherty CM, Styles MJ, Bell S, Kirby N. Biomimetic mineralization of metal organic frameworks as protective coatings for biomacromolecules. Nat Commun. 2015;6(1):7240. doi: 10.1038/ncomms8240, PMID 26041070.

Teplensky MH, Fantham M, Poudel C, Hockings C, Lu M, Guna A. A highly porous metal-organic framework system to deliver payloads for gene knockdown. Chem. 2019;5(11):2926-41. doi: 10.1016/j.chempr.2019.08.015.

Chen TT, Yi JT, Zhao YY, Chu X. Biomineralized metal organic framework nanoparticles enable intracellular delivery and endo-lysosomal release of native active proteins. J Am Chem Soc. 2018;140(31):9912-20. doi: 10.1021/jacs.8b04457, PMID 30008215.

Luo Z, Jiang L, Yang S, Li Z, Soh WM, Zheng L. Light-induced redox-responsive smart drug delivery system by using selenium-containing polymer@MOF Shell/Core nanocomposite. Adv Healthc Mater. 2019;8(15):e1900406. doi: 10.1002/adhm.201900406, PMID 31183979.

Serhan M, Sprowls M, Jackemeyer D, Long M, Perez ID, Maret W. Total iron measurement in human serum with a smartphone. IEEE J Transl Eng Health Med. 2020;8:1-9.

Chen WH, Yu X, Liao WC, Sohn YS, Cecconello A, Kozell A. ATP-responsive aptamer-based metal organic framework nanoparticles (NMOFs) for the controlled release of loads and drugs. Adv Funct Materials. 2017;27(37):1702102. doi: 10.1002/adfm.201702102.

Horcajada P, Chalati T, Serre C, Gillet B, Sebrie C, Baati T. Porous metal organic framework nanoscale carriers as a potential platform for drug delivery and imaging. Nat Mater. 2010;9(2):172-8. doi: 10.1038/nmat2608, PMID 20010827.

Chen J, Sheng D, Ying T, Zhao H, Zhang J, Li Y. MOFs-based nitric oxide therapy for tendon regeneration. Nanomicro Lett. 2020;13(1):23. doi: 10.1007/s40820-020-00542-x, PMID 34138189.

Filippousi M, Turner S, Leus K, Siafaka PI, Tseligka ED, Vandichel M. Biocompatible Zr-based nanoscale MOFs coated with modified poly(ε-caprolactone) as anticancer drug carriers. Int J Pharm. 2016;509(1-2):208-18. doi: 10.1016/j.ijpharm.2016.05.048, PMID 27235556.

Zhu W, Guo J, Amini S, Ju Y, Agola JO, Zimpel A. Supra cells: living mammalian cells protected within functional modular nanoparticle-based exoskeletons. Adv Mater. 2019;31(25):e1900545. doi: 10.1002/adma.201900545, PMID 31032545.

Ding LG, Shi M, Yu ED, Xu YL, Zhang YY, Geng XL. Metal organic framework-based delivery systems as nanovaccine for enhancing immunity against porcine circovirus type 2. Mater Today Bio. 2025;32:101712. doi: 10.1016/j.mtbio.2025.101712, PMID 40230641.

Zhou Y, Liu L, Cao Y, Yu S, He C, Chen X. A nanocomposite vehicle based on metal organic framework nanoparticle incorporated biodegradable microspheres for enhanced oral insulin delivery. ACS Appl Mater Interfaces. 2020;12(20):22581-92. doi: 10.1021/acsami.0c04303, PMID 32340452.

Botet Carreras A, Tamames Tabar C, Salles F, Rojas S, Imbuluzqueta E, Lana H. Improving the genistein oral bioavailability via its formulation into the metal organic framework MIL-100(Fe). J Mater Chem B. 2021;9(9):2233-9. doi: 10.1039/d0tb02804e, PMID 33596280.

Zhang W, Guo T, Wang C, He Y, Zhang X, Li G. MOF capacitates cyclodextrin to mega-load mode for high efficient delivery of valsartan. Pharm Res. 2019;36(8):117. doi: 10.1007/s11095-019-2650-3, PMID 31161271.

Forster PM, Thomas PM, Cheetham AK. Biphasic solvothermal synthesis: a new approach for hybrid inorganic-organic materials. Chem Mater. 2002;14(1):17-20. doi: 10.1021/cm010820q.

Mueller U, Schubert M, Teich F, Puetter H, Schierle Arndt K, Pastre J. Metal organic frameworks: prospective industrial applications. J Mater Chem. 2006;16(7):626-36. doi: 10.1039/B511962F.

Stock N. High-throughput investigations employing solvothermal syntheses. Microporous and Mesoporous Materials. 2010;129(3):287-95. doi: 10.1016/j.micromeso.2009.06.007.

Jhung SH, Yoon JW, Hwang JS, Cheetham AK, Chang JS. Facile synthesis of nanoporous nickel phosphates without organic templates under microwave irradiation. Chem Mater. 2005;17(17):4455-60. doi: 10.1021/cm047708n.

Colak AT, Pamuk G, Yesilel OZ, Yuksel F. Hydrothermal synthesis and structural characterization of Zn(II) and Cd(II)-pyridine-2,3-dicarboxylate 2D coordination polymers {(NH4)2[M(μ-pydc)2]•2H2O}n. Solid State Sci. 2011;13(12):2100-4. doi: 10.1016/j.solidstatesciences.2011.08.006.

Gangu KK, Maddila S, Mukkamala SB, Jonnalagadda SB. A review on contemporary metal-organic framework materials. Inorg Chim Acta. 2016 May 1;446:61-74. doi: 10.1016/j.ica.2016.02.062.

ferey G, Mellot Draznieks C, Serre C, Millange F, Dutour J, Surble S. A chromium terephthalate based solid with unusually large pore volumes and surface area. Science. 2005;309(5743):2040-2. doi: 10.1126/science.1116275, PMID 16179475.

Jhung SH, Lee JH, Forster PM, Ferey G, Cheetham AK, Chang JS. Microwave synthesis of hybrid inorganic-organic porous materials: phase selective and rapid crystallization. Chemistry. 2006;12(30):7899-905. doi: 10.1002/chem.200600270, PMID 16871506.

Gangu KK, Maddila S, Mukkamala SB, Jonnalagadda SB. A review on contemporary metal organic framework materials. Inorg Chim Acta. 2016 May 1;446:61-74. doi: 10.1016/j.ica.2016.02.062.

Mueller U, Schubert M, Teich F, Puetter H, Schierle Arndt K, Pastre J. Metal organic frameworks prospective industrial applications. J Mater Chem. 2006;16(7):626-36. doi: 10.1039/B511962F.

Schlesinger M, Schulze S, Hietschold M, Mehring M. Evaluation of synthetic methods for microporous metal organic frameworks exemplified by the competitive formation of [Cu2(btc)3(H2O)3] and [Cu2(btc)(OH)(H2O)]. Microporous and Mesoporous Materials. 2010;132(1-2):121-7. doi: 10.1016/j.micromeso.2010.02.008.

Xue M, Ma S, Jin Z, Schaffino RM, Zhu GS, Lobkovsky EB. Robust metal-organic framework enforced by triple framework interpenetration exhibiting high H2 storage density. Inorg Chem. 2008;47(15):6825-8. doi: 10.1021/ic800854y, PMID 18582032.

Lin Z, Wragg DS, Warren JE, Morris RE. Anion control in the ionothermal synthesis of coordination polymers. J Am Chem Soc. 2007;129(34):10334-5. doi: 10.1021/ja0737671, PMID 17676849.

Zhang J, Wu T, Chen S, Feng P, Bu X. Versatile structure directing roles of deep eutectic solvents and their implication in the generation of porosity and open metal sites for gas storage. Angew Chem Int Ed Engl. 2009;48(19):3486-90. doi: 10.1002/anie.200900134, PMID 19343752.

Li JB, Dong XY, Cao LH, Zang SQ, Mak TC. N-donor ligand-mediated assembly of divalent zinc and cadmium coordination polymers based on 2,3,2′,3′-thiaphthalic acid: structures and properties. Cryst Eng Comm. 2012;14(13):4444-53. doi: 10.1039/c2ce06705f.

Zhou JM, Shi W, Li HM, Li H, Cheng P. Experimental studies and mechanism analysis of high sensitivity luminescent sensing of pollutional small molecules and ions in ln 4 o 4 cluster based microporous metal organic frameworks. J Phys Chem C. 2014;118(1):416-26. doi: 10.1021/jp4097502.

Sun L, Campbell MG, Dinca M. Elektrisch leitfahige porose metall organische gerustverbindungen. Angew Chem. 2016;128(11):3628-42. doi: 10.1002/ange.201506219.

Stassen I, Burtch N, Talin A, Falcaro P, Allendorf M, Ameloot R. An updated roadmap for the integration of metal organic frameworks with electronic devices and chemical sensors. Chem Soc Rev. 2017;46(11):3185-241. doi: 10.1039/c7cs00122c, PMID 28452388.

Wong M, Lim GT, Moyse A, Reddy JN, Sue HJ. A new test methodology for evaluating scratch resistance of polymers. Wear. 2004;256(11-12):1214-27. doi: 10.1016/j.wear.2003.10.027.

Van De Voorde B, Ameloot R, Stassen I, Everaert M, De Vos D, Tan JC. Mechanical properties of electrochemically synthesised metal-organic framework thin films. J Mater Chem C. 2013;1(46):7716-24. doi: 10.1039/c3tc31039f.

Lewis J. Material challenge for flexible organic devices. Materials Today. 2006;9(4):38-45. doi: 10.1016/S1369-7021(06)71446-8.

Peterson VK, Kearley GJ, Wu Y, Ramirez Cuesta AJ, Kemner E, Kepert CJ. Local vibrational mechanism for negative thermal expansion: a combined neutron scattering and first principles study. Angew Chem Int Ed Engl. 2010;49(3):585-8. doi: 10.1002/anie.200903366, PMID 19998291.

Shen F, Lu P, O Shea SJ, Lee KH, Ng TY. Thermal effects on coated resonant microcantilevers. Sens Actuat A. 2001;95(1):17-23. doi: 10.1016/S0924-4247(01)00715-4.

Burtch NC, Jasuja H, Walton KS. Water stability and adsorption in metal-organic frameworks. Chem Rev. 2014;114(20):10575-612. doi: 10.1021/cr5002589, PMID 25264821.

Heck RM, Gulati S, Farrauto RJ. The application of monoliths for gas-phase catalytic reactions. Chem Eng J. 2001;82(1-3):149-56. doi: 10.1016/S1385-8947(00)00365-X.

Darunte LA, Terada Y, Murdock CR, Walton KS, Sholl DS, Jones CW. Monolith supported amine functionalized Mg2(dobpdc) adsorbents for CO2 capture. ACS Appl Mater Interfaces. 2017;9(20):17042-50. doi: 10.1021/acsami.7b02035, PMID 28440615.

Evans JD, Coudert FX. Macroscopic simulation of deformation in soft microporous composites. J Phys Chem Lett. 2017;8(7):1578-84. doi: 10.1021/acs.jpclett.7b00397, PMID 28325040.

Peng Y, Krungleviciute V, Eryazici I, Hupp JT, Farha OK, Yildirim T. Methane storage in metal organic frameworks: current records, surprise findings and challenges. J Am Chem Soc. 2013;135(32):11887-94. doi: 10.1021/ja4045289, PMID 23841800.

Chanut N, Wiersum AD, Lee UH, Hwang YK, Ragon F, Chevreau H. Observing the effects of shaping on gas adsorption in metal organic frameworks. Eur J Inorg Chem. 2016;2016(27):4416-23. doi: 10.1002/ejic.201600410.

Figueroa Quintero L, Villalgordo Hernandez D, Delgado Marin JJ, Narciso J, Velisoju VK, Castano P. Post-synthetic surface modification of metal-organic frameworks and their potential applications. Small Methods. 2023;7(4):e2201413. doi: 10.1002/smtd.202201413, PMID 36789569.

Li C, Liu J, Zhang K, Zhang S, Lee Y, Li T. Coating the right polymer: achieving ideal metal organic framework particle dispersibility in polymer matrixes using a coordinative crosslinking surface modification method. Angew Chem Int Ed Engl. 2021;60(25):14138-45. doi: 10.1002/anie.202104487, PMID 33856717.

Tao B, Zhao W, Lin C, Yuan Z, He Y, Lu L. Surface modification of titanium implants by ZIF-8@Levo/lBL coating for inhibition of bacterial-associated infection and enhancement of in vivo osseo integration. Chem Eng J. 2020 Jun 15;390:124621. doi: 10.1016/j.cej.2020.124621.

Imam SS. Nanoparticles: the future of drug delivery. Int J Curr Pharm Sci. 2023;15(6):8-15. doi: 10.22159/ijcpr.2023v15i6.3076.

Abdellatif MM, Ahmed SM, El Nabarawi MA, Teaima M. Nano-delivery systems for enhancing oral bioavailability of drugs. Int J App Pharm. 2023;15(1):13-9. doi: 10.22159/ijap.2023v15i1.46758.

Lee J, Farha OK, Roberts J, Scheidt KA, Nguyen ST, Hupp JT. Metal organic framework materials as catalysts. Chem Soc Rev. 2009;38(5):1450-9. doi: 10.1039/b807080f, PMID 19384447.

Bachman JE, Smith ZP, Li T, Xu T, Long JR. Enhanced ethylene separation and plasticization resistance in polymer membranes incorporating metal-organic framework nanocrystals. Nat Mater. 2016;15(8):845-9. doi: 10.1038/nmat4621, PMID 27064528.

He C, Liu D, Lin W. Nanomedicine applications of hybrid nanomaterials built from metal ligand coordination bonds: nanoscale metal organic frameworks and nanoscale coordination polymers. Chem Rev. 2015;115(19):11079-108. doi: 10.1021/acs.chemrev.5b00125, PMID 26312730.

Doherty CM, Buso D, Hill AJ, Furukawa S, Kitagawa S, Falcaro P. Using functional nano and microparticles for the preparation of metal organic framework composites with novel properties. Acc Chem Res. 2014;47(2):396-405. doi: 10.1021/ar400130a, PMID 24205847.

Shen K, Zhang L, Chen X, Liu L, Zhang D, Han Y. Ordered macro-microporous metal organic framework single crystals. Science. 2018;359(6372):206-10. doi: 10.1126/science.aao3403, PMID 29326271.

Fratzl P, Weinkamer R. Nature’s hierarchical materials. Prog Mater Sci. 2007;52(8):1263-334. doi: 10.1016/j.pmatsci.2007.06.001.

Seoane B, Coronas J, Gascon I, Etxeberria Benavides ME, Karvan O, Caro J. Metal organic framework based mixed matrix membranes: a solution for highly efficient CO2 capture? Chem Soc Rev. 2015;44(8):2421-54. doi: 10.1039/c4cs00437j, PMID 25692487.

Joshi P, Nainwal N, Morris S, Jakhmola V. A review on recent advances on stimuli-based smart nanomaterials for drug delivery and biomedical application. Int J App Pharm. 2023;15(5):48-59. doi: 10.22159/ijap.2023v15i5.48186.

Akifulhaque M, Shivacharan GR, Parveen MD, Shanthi Priya DK, Kumar Reddy Konatham T, Vallakeerthi N. Sensor applications in analysis of drugs and formulations. Int J Appl Pharm Sci Res. 2021;14(11):57-62. doi: 10.22159/ajpcr.2021v14i11.41134.

Wu HB, Lou XW. Metal organic frameworks and their derived materials for electrochemical energy storage and conversion: promises and challenges. Sci Adv. 2017;3(12):eaap9252. doi: 10.1126/sciadv.aap9252, PMID 29214220.

Glotzer SC, Solomon MJ. Anisotropy of building blocks and their assembly into complex structures. Nat Mater. 2007;6(8):557-62. doi: 10.1038/nmat1949, PMID 17667968.

Park SY, Lytton Jean AK, Lee B, Weigand S, Schatz GC, Mirkin CA. DNA-programmable nanoparticle crystallization. Nature. 2008;451(7178):553-6. doi: 10.1038/nature06508, PMID 18235497.

Ren H, Zhang L, An J, Wang T, Li L, Si X. Polyacrylic acid@zeolitic imidazolate framework-8 nanoparticles with ultrahigh drug loading capability for pH-sensitive drug release. Chem Commun (Camb). 2014;50(8):1000-2. doi: 10.1039/c3cc47666a, PMID 24306285.

Gandara Loe J, Ortuno Lizaran I, Fernandez Sanchez L, Alio JL, Cuenca N, Vega Estrada A. Metal organic frameworks as drug delivery platforms for ocular therapeutics. ACS Appl Mater Interfaces. 2019;11(2):1924-31. doi: 10.1021/acsami.8b20222, PMID 30561189.

Taylor Pashow KM, Della Rocca J, Xie Z, Tran S, Lin W. Postsynthetic modifications of iron carboxylate nanoscale metal organic frameworks for imaging and drug delivery. J Am Chem Soc. 2009;131(40):14261-3. doi: 10.1021/ja906198y, PMID 19807179.

Chen Y, Li P, Modica JA, Drout RJ, Farha OK. Acid-resistant mesoporous metal-organic framework toward oral insulin delivery: protein encapsulation, protection and release. J Am Chem Soc. 2018;140(17):5678-81. doi: 10.1021/jacs.8b02089, PMID 29641892.

Published

07-07-2025

How to Cite

AL-UOBODY, R. M. K., HAMMOODI, H. A., & AMIN, A. (2025). METAL–ORGANIC FRAMEWORKS OVERVIEW: STATE OF THE ART. International Journal of Applied Pharmaceutics, 17(4), 30–37. https://doi.org/10.22159/ijap.2025v17i4.54159

Issue

Section

Review Article(s)

Similar Articles

<< < 5 6 7 8 9 > >> 

You may also start an advanced similarity search for this article.