RECENT INNOVATIONS IN MICROFABRICATION TECHNIQUES FOR ENHANCED MICROFLUIDIC CHIP PERFORMANCE IN DRUG DEVELOPMENT
DOI:
https://doi.org/10.22159/ijap.2025v17i4.54228Keywords:
Lab-on-a-chip, High-throughput screening, Microelectronics, Microfluidic technology, Molecular biology, Drug delivery systems, Point-of-care diagnostics, BiomarkersAbstract
An example of a mobile laboratory is microfluidic chip technology or lab-on-a-chip. It is one of the great breakthroughs in the pharmaceutical industry as it allows flexibility in controlling experiment conditions, minimizing sample and reagent waste, and allowing high-throughput screening. Microfluidics has roots in molecular analysis, microelectronics, biodefense, and even molecular biology; likewise, gas-phase chromatography and capillary electrophoresis are ancestors for it. Determining the use of this equipment in laboratories leads to automation, miniaturization of procedures, precision and uncertainty in drug creation, and repeatable experiments, which enhances the accuracy of results. Its merits are the performance of computerized simulation of organs, where it enhances the drug screen, toxicity testing, personalized medicine, and pharmacokinetics, which leads to the testing of thousands of candidate drugs being tested at once. Its performance is excellent; however, it cannot be denied that it has a disadvantage, which is in designing the chip and integrating it with the already existing system. It has yet to integrate widely used markers for patient samples and other markers to improve point-of-care diagnostics that aim to use the patient’s sample to work on to change the structure of future studies in the pharmaceutical industry.
References
Pattanayak P, Singh SK, Gulati M, Vishwas S, Kapoor B, Chellappan DK. Microfluidic chips: recent advances critical strategies in design applications and future perspectives. Microfluid Nanofluidics. 2021 Dec;25(12):99. doi: 10.1007/s10404-021-02502-2, PMID 34720789.
Li X, Fan X, Li Z, Shi L, Liu J, Luo H. Application of microfluidics in drug development from traditional medicine. Biosensors. 2022 Oct 13;12(10):870. doi: 10.3390/bios12100870, PMID 36291008.
Whitesides GM. The origins and the future of microfluidics. Nature. 2006 Jul 27;442(7101):368-73. doi: 10.1038/nature05058, PMID 16871203.
Hajam MI, Khan MM. Microfluidics: a concise review of the history principles design applications and future outlook. Biomater Sci. 2024;12(2):218-51. doi: 10.1039/d3bm01463k, PMID 38108438.
Guo S, Imato T. Application of compact disc type microfluidic platform to biochemical and biomedical analysis review. FIA. 2013;30(1):29. doi: 10.24688/jfia.30.1_29.
Anwar N, Jiang G, Wen Y, Ahmed M, Zhong H, Ao S. Evaluating the potential of two-dimensional materials for innovations in multifunctional electrochromic biochemical sensors: a review. Moore More. 2024 Nov 25;1(1):12. doi: 10.1007/s44275-024-00013-0.
Whitesides GM. The origins and the future of microfluidics. Nature. 2006 Jul 27;442(7101):368-73. doi: 10.1038/nature05058, PMID 16871203.
Shendure J, Balasubramanian S, Church GM, Gilbert W, Rogers J, Schloss JA. DNA sequencing at 40: past present and future. Nature. 2017 Oct 19;550(7676):345-53. doi: 10.1038/nature24286, PMID 29019985.
Zubov VV, Chemeris DA, Vasilov RG, Kurochkin VE, Alekseev YI. Brief history of high throughput nucleic acid sequencing methods. Biomics. 2021;13(1):27-46. doi: 10.31301/2221-6197.bmcs.2021-4.
Becker H, Gartner C. Polymer microfabrication technologies for microfluidic systems. Anal Bioanal Chem. 2008 Jan;390(1):89-111. doi: 10.1007/s00216-007-1692-2, PMID 17989961.
Roy E, Galas JC, Veres T. Thermoplastics elastomers for microfluidics valving and mixing toward high throughput fabrication of multilayers devices. Rt-PA of the 14th international conference on miniaturized systems for Chemistry and life sciences Groningen; 2010. p. 1235-7.
Stavins RA, King WP. Three-dimensional elastomer bellows microfluidic pump. Microfluid Nanofluid. 2023 Feb;27(2):13. doi: 10.1007/s10404-023-02624-9.
Raj MK, Chakraborty S. PDMS microfluidics: a mini-review. J Appl Polym Sci. 2020 Jul 15;137(27):48958. doi: 10.1002/app.48958.
Kulkarni MB, Goel S. Microfluidic devices for synthesizing nanomaterials a review. Nano Express. 2020 Nov 30;1(3):32004. doi: 10.1088/2632-959X/abcca6.
Escobedo C, Brolo AG. Synergizing microfluidics and plasmonics: advances applications and future directions. Lab Chip. 2025;25(5):1256-81. doi: 10.1039/d4lc00572d, PMID 39774486.
Bhusal A, Yogeshwaran S, Goodarzi Hosseinabadi H, Cecen B, Miri AK. Microfluidics for high throughput screening of biological agents and therapeutics. Biomed Mater Devices. 2025;3(1):93-107. doi: 10.1007/s44174-024-00169-1.
Yoon S, Kilicarslan You D, Jeong U, Lee M, Kim E, Jeon TJ. Microfluidics in high throughput drug screening: organ on-a-chip and C. elegans based innovations. Biosensors. 2024 Jan 21;14(1):55. doi: 10.3390/bios14010055, PMID 38275308.
Fu J, Qiu H, Tan CS. Microfluidic liver on-a-chip for preclinical drug discovery. Pharmaceutics. 2023 Apr 21;15(4):1300. doi: 10.3390/pharmaceutics15041300, PMID 37111785.
Kimura H, Ikeda T, Nakayama H, Sakai Y, Fujii T. An on-chip-small intestine liver model for pharmacokinetic studies. J Lab Autom. 2015 Jun;20(3):265-73. doi: 10.1177/2211068214557812, PMID 25385717.
Nandy S, Thakur S, Saha S, Chhatrala KA, Agarwal Bansal A. Microfluidic organ-on-a-chip models of human organs in drug discovery. JETIR. 2024;11(3):h221-7.
Ingber DE. Human organs-on-chips for disease modelling drug development and personalized medicine. Nat Rev Genet. 2022 Aug;23(8):467-91. doi: 10.1038/s41576-022-00466-9, PMID 35338360.
Mehraji S, De Voe DL. Microfluidic synthesis of lipid-based nanoparticles for drug delivery: recent advances and opportunities. Lab Chip. 2024;24(5):1154-74. doi: 10.1039/d3lc00821e, PMID 38165786.
Piunti C, Cimetta E. Microfluidic approaches for producing lipid based nanoparticles for drug delivery applications. Biophys Rev. 2023 Sep 1;4(3):31304. doi: 10.1063/5.0150345, PMID 38505779.
Jung D, Jang S, Park D, Bae NH, Han CS, Ryu S. Automated microfluidic systems facilitating the scalable and reliable production of lipid nanoparticles for gene delivery. BioChip J. 2025;19(1):79-90. doi: 10.1007/s13206-024-00182-y.
Celik C, Akcay G, Ildız N, Ocsoy I. Microfluidic chips as point of care testing for develop diagnostic microdevices. In: Mandal AK, Ghorai S, Husen A, editors. Functionalized smart nanomaterials for point-of-care testing. Singapore: Springer Nature Singapore; 2024. p. 115-28. doi: 10.1007/978-981-99-5787-3_6.
Arshavsky Graham S, Segal E. Lab-on-a-chip devices for point of care medical diagnostics. Adv Biochem Eng Biotechnol. 2022;179:247-65. doi: 10.1007/10_2020_127, PMID 32435872.
Yahng SA, Kim HJ, Lee SB, Yoo SH, Yoon JH, Lee JH. Development of a personalized microfluidic platform for improving treatment efficiency in multiple myeloma. Blood. 2024 Nov 5;144 Suppl 1:3604. doi: 10.1182/blood-2024-211827.
Jeon H, Park Y, Um E, Kim H, Jung CY, Kim DW. Novel microfluidic and AI-based approach for personalized drug selection in chronic myeloid leukemia (CML) patients. Blood. 2024 Nov 5;144 Suppl 1:7482. doi: 10.1182/blood-2024-199886.
Zhuang J, Xia L, Zou Z, Yin J, Lin N, Mu Y. Recent advances in integrated microfluidics for liquid biopsies and future directions. Biosens Bioelectron. 2022 Dec 1;217:114715. doi: 10.1016/j.bios.2022.114715, PMID 36174359.
Escobedo C, Brolo AG. Synergizing microfluidics and plasmonics: advances applications and future directions. Lab Chip. 2025;25(5):1256-81. doi: 10.1039/d4lc00572d, PMID 39774486.
Xie Y, Xu X, Wang J, Lin J, Ren Y, Wu A. Latest advances and perspectives of liquid biopsy for cancer diagnostics driven by microfluidic on-chip assays. Lab Chip. 2023;23(13):2922-41. doi: 10.1039/d2lc00837h, PMID 37291937.
Nakhod V, Krivenko A, Butkova T, Malsagova K, Kaysheva A. Advances in molecular and genetic technologies and the problems related to their application in personalized medicine. J Pers Med. 2024 May 23;14(6):555. doi: 10.3390/jpm14060555, PMID 38929775.
Liu X, Sun A, Brodsky J, Gablech I, Lednicky T, Voparilova P. Microfluidics chips fabrication techniques comparison. Sci Rep. 2024 Nov 20;14(1):28793. doi: 10.1038/s41598-024-80332-2, PMID 39567624.
Ezzat HS, Faris RA, Taha M. Lab on-a-chip-based an integrated microfluidic device lo-cost, rapid and sensitive analysis of augmentin. AIP Conf Proc. 2024 Feb 16;3051(1)100025. doi: 10.1063/5.0191751.
Fabozzi A, Della Sala F, Di Gennaro M, Barretta M, Longobardo G, Solimando N. Design of functional nanoparticles by microfluidic platforms as advanced drug delivery systems for cancer therapy. Lab Chip. 2023;23(5):1389-409. doi: 10.1039/d2lc00933a, PMID 36647782.
Ferreira B, Faria P, Viegas J, Sarmento B, Martins C. Microfluidic technologies for precise drug delivery. In: Lamprou DA, Weaver E, editors. Microfluidics in pharmaceutical sciences: formulation drug delivery screening and diagnostics. Cham: Springer Nature Switzerland; 2024 Jun 22. p. 313-33. doi: 10.1007/978-3-031-60717-2_13.
Lin J, Hou Y, Zhang Q, Lin JM. Droplets in open microfluidics: generation manipulation and application in cell analysis. Lab Chip. 2025;25(5):787-805. doi: 10.1039/d4lc00646a, PMID 39774470.
Vladisavljevic GT, Kobayashi I, Nakajima M. Production of uniform droplets using membrane microchannel and microfluidic emulsification devices. Microfluid Nanofluid. 2012 Jul;13(1):151-78. doi: 10.1007/s10404-012-0948-0.
Jahn A, Reiner JE, Vreeland WN, DeVoe DL, Locascio LE, Gaitan M. Preparation of nanoparticles by continuous flow microfluidics. J Nanopart Res. 2008 Aug;10(6):925-34. doi: 10.1007/s11051-007-9340-5.
Iannone M, Caccavo D, Barba AA, Lamberti G. A low-cost push pull syringe pump for continuous flow applications. Hardware X. 2022 Apr 1;11(1):e00295. doi: 10.1016/j.ohx.2022.e00295, PMID 35509919.
Yao F, Zhu P, Chen J, Li S, Sun B, Li Y. Synthesis of nanoparticles via microfluidic devices and integrated applications. Mikrochim Acta. 2023 Jul;190(7):256. doi: 10.1007/s00604-023-05838-4, PMID 37301779.
Knauer A, Koehler JM. Screening of nanoparticle properties in microfluidic syntheses. Nanotechnol Rev. 2014 Feb 1;3(1):5-26. doi: 10.1515/ntrev-2013-0018.
Arruebo M, Sebastian V. Batch and microfluidic reactors in the synthesis of enteric drug carriers. In: Nanotechnology for oral drug delivery. Elsevier; 2020 Jan 1. p. 317-57. doi: 10.1016/B978-0-12-818038-9.00008-9.
Liu Y, Yang G, Hui Y, Ranaweera S, Zhao CX. Microfluidic nanoparticles for drug delivery. Small. 2022 Sep;18(36):e2106580. doi: 10.1002/smll.202106580, PMID 35396770.
Operti MC, Bernhardt A, Grimm S, Engel A, Figdor CG, Tagit O. PLGA based nanomedicines manufacturing: technologies overview and challenges in industrial scale-up. Int J Pharm. 2021 Aug 10;605:120807. doi: 10.1016/j.ijpharm.2021.120807, PMID 34144133.
Rawas Qalaji M, Cagliani R, Al Hashimi N, Al Dabbagh R, Al Dabbagh A, Hussain Z. Microfluidics in drug delivery: review of methods and applications. Pharm Dev Technol. 2023 Jan 2;28(1):61-77. doi: 10.1080/10837450.2022.2162543, PMID 36592376.
Sun Y, Jin F, Gao D. Microfluidic chip-based nano-carrier-based drug delivery systems and their efficacy assessment using tumor organ chips. BME Horiz. 2024 Dec 20;2(3):136. doi: 10.70401/bmeh.2024.136.
Tsai HF, Podder S, Chen PY. Microsystem advances through integration with artificial intelligence. Micromachines. 2023 Apr 8;14(4):826. doi: 10.3390/mi14040826, PMID 37421059.
Ahmed F, Yoshida Y, Wang J, Sakai K, Kiwa T. Design and validation of microfluidic parameters of a microfluidic chip using fluid dynamics. AIP Adv. 2021 Jul 1;11(7):75224. doi: 10.1063/5.0056597.
Deswal H, Yadav SP, Singh SG, Agrawal A. Flow sensors for on-chip microfluidics: promise and challenges. Exp Fluids. 2024 Dec;65(12):1-25. doi: 10.1007/s00348-024-03918-6.
Su F, Chakrabarty K, Fair RB. Microfluidics based biochips: technology issues implementation platforms and design automation challenges. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. 2006 Feb 21;25(2):211-23. doi: 10.1109/TCAD.2005.855956.
Aryal P, Henry CS. Advancements and challenges in microfluidic paper-based analytical devices: design manufacturing sustainability and field applications. Front Lab Chip Technol. 2024 Dec 20;3:1467423. doi: 10.3389/frlct.2024.1467423.
Yang SM, LV S, Zhang W, Cui Y. Microfluidic point-of-care (POC) devices in early diagnosis: a review of opportunities and challenges. Sensors (Basel). 2022 Feb 18;22(4):1620. doi: 10.3390/s22041620, PMID 35214519.
Baroud CN, Gallaire F, Dangla R. Dynamics of microfluidic droplets. Lab Chip. 2010;10(16):2032-45. doi: 10.1039/c001191f, PMID 20559601.
Akerele JI, Uzoka A, Ojukwu PU, Olamijuwon OJ. Improving healthcare application scalability through microservices architecture in the cloud. Int J Sci Res Updates. 2024 Nov;8(2):100-9. doi: 10.53430/ijsru.2024.8.2.0064.
Behera PP, Kumar N, Kumari M, Kumar S, Mondal PK, Arun RK. Integrated microfluidic devices for point-of-care detection of bio-analytes and disease. Sens Diagn. 2023;2(6):1437-59. doi: 10.1039/D3SD00170A.
Suzuki H, Yoneyama R. Integrated microfluidic system with electrochemically actuated on-chip pumps and valves. Sens Actuators B. 2003 Nov 15;96(1-2):38-45. doi: 10.1016/S0925-4005(03)00482-9.
Iakovlev AP, Erofeev AS, Gorelkin PV. Novel pumping methods for microfluidic devices: a comprehensive review. Biosensors. 2022 Nov 1;12(11):956. doi: 10.3390/bios12110956, PMID 36354465.
Melin J, Quake SR. Microfluidic large scale integration: the evolution of design rules for biological automation. Annu Rev Biophys Biomol Struct. 2007 Jun 9;36(1):213-31. doi: 10.1146/annurev.biophys.36.040306.132646, PMID 17269901.
Prithvi J, Sreeja BS, Radha S, Joshitha C, Gowthami A. Critical review and exploration on micro-pumps for microfluidic delivery. In: Guha K, Dutta G, Biswas A, Srinivasa Rao K, editors. MEMS and microfluidics in healthcare: devices and applications perspectives. Singapore: Springer Nature Singapore; 2023 Mar 14. p. 65-100. doi: 10.1007/978-981-19-8714-4_5.
Zhang K, Xi J, Zhao H, Wang Y, Xue J, Liang N. A dual functional microfluidic chip for guiding personalized lung cancer medicine: combining EGFR mutation detection and organoid based drug response test. Lab Chip. 2024;24(6):1762-74. doi: 10.1039/d3lc00974b, PMID 38352981.
Cruz A, Fernandes E, Rodrigues RO, Catarino SO, Pinho D. Editorial: disease-on-a-chip: from point-of-care to personalized medicine. Front Pharmacol. 2023 Dec 11;14:1344379. doi: 10.3389/fphar.2023.1344379, PMID 38146462.
Xing G, Ai J, Wang N, Pu Q. Recent progress of smartphone assisted microfluidic sensors for point of care testing. TrAC Trends Anal Chem. 2022 Dec 1;157:116792. doi: 10.1016/j.trac.2022.116792.
Patel R, Tsan A, Tam R, Desai R, Spoerke J, Schoenbrunner N. Mutation scanning using MUT-MAP, a high throughput microfluidic chip-based multi-analyte panel. PLOS One. 2012 Dec 17;7(12):e51153. doi: 10.1371/journal.pone.0051153, PMID 23284662.
Greenwood MP, Newton KM, Pepper KL, Hendrickson HL, Olsen RJ, Thomas JS. CALR frameshift mutation detection in myeloproliferative neoplasms by microfluidic chip analysis. Lab Med. 2024 Dec 24:lmae096. doi: 10.1093/labmed/lmae096, PMID 39719677.
Ohno KI, Tachikawa K, Manz A. Microfluidics: applications for analytical purposes in chemistry and biochemistry. Electrophoresis. 2008 Nov;29(22):4443-53. doi: 10.1002/elps.200800121, PMID 19035399.
Bein A, Shin W, Jalili Firoozinezhad S, Park MH, Sontheimer Phelps A, Tovaglieri A. Microfluidic organ-on-a-chip models of human intestine. Cell Mol Gastroenterol Hepatol. 2018 Jan 1;5(4):659-68. doi: 10.1016/j.jcmgh.2017.12.010, PMID 29713674.
Sekhwama M, Mpofu K, Sudesh S, Mthunzi Kufa P. Integration of microfluidic chips with biosensors. Discov Appl Sci. 2024 Aug 23;6(9):458. doi: 10.1007/s42452-024-06103-w.
Kim I, Kwon J, Rhyou J, Jeon JS. Microfluidic chips as drug screening platforms. JMST Adv. 2024 Jun 4;6(2):155-60. doi: 10.1007/s42791-024-00078-w.
Zhu Z, Cheng Y, Liu X, Ding W, Liu J, Ling Z. Advances in the development and application of human organoids: techniques applications and future perspectives. Cell Transplant. 2025 Jan;34:9636897241303271. doi: 10.1177/09636897241303271, PMID 39874083.
Yu L, Huang H, Dong X, Wu D, Qin J, Lin B. Simple fast and high throughput single cell analysis on PDMS microfluidic chips. Electrophoresis. 2008 Dec;29(24):5055-60. doi: 10.1002/elps.200800331, PMID 19130590.
Oksuz C, Bicmen C, Tekin HC. Dynamic fluidic manipulation in microfluidic chips with dead end channels through spinning: the spinochip technology for hematocrit measurement white blood cell counting and plasma separation. Lab Chip. 2025;25(8):1926-37. doi: 10.1039/d4lc00979g, PMID 39871622.
Zhou WM, Yan YY, Guo QR, Ji H, Wang H, Xu TT. Microfluidics applications for high throughput single cell sequencing. J Nanobiotechnology. 2021 Dec;19(1):312. doi: 10.1186/s12951-021-01045-6, PMID 34635104.
Mi F, Hu C, Wang Y, Wang L, Peng F, Geng P. Recent advancements in microfluidic chip biosensor detection of foodborne pathogenic bacteria: a review. Anal Bioanal Chem. 2022 Apr;414(9):2883-902. doi: 10.1007/s00216-021-03872-w, PMID 35064302.
Lehnert T, Gijs MA. Microfluidic systems for infectious disease diagnostics. Lab Chip. 2024;24(5):1441-93. doi: 10.1039/d4lc00117f, PMID 38372324.
Oushyani Roudsari Z, Esmaeili Z, Nasirzadeh N, Heidari Keshel S, Sefat F, Bakhtyari H. Microfluidics as a promising technology for personalized medicine. BioImpacts. 2025;15:29944. doi: 10.34172/bi.29944, PMID 39963565.
Apoorva S, Nguyen NT, Sreejith KR. Recent developments and future perspectives of microfluidics and smart technologies in wearable devices. Lab Chip. 2024;24(7):1833-66. doi: 10.1039/d4lc00089g, PMID 38476112.
Komalasari R. AI-powered wearables revolutionizing health tracking and personalized wellness management. Timor Leste J Bus Manag. 2024 Jul 23;6(1):42-50. doi: 10.51703/bm.v6i0.163.
Paul Kunnel BP, Demuru S. An epidermal wearable microfluidic patch for simultaneous sampling storage and analysis of biofluids with counterion monitoring. Lab Chip. 2022;22(9):1793-804. doi: 10.1039/d2lc00183g, PMID 35316321.
Shen H, Li Q, Song W, Jiang X. Microfluidic on-chip valve and pump for applications in immunoassays. Lab Chip. 2023;23(2):341-8. doi: 10.1039/d2lc01042a, PMID 36602133.
Pandey S, Gupta S, Bharadwaj A, Rastogi A. Microfluidic systems: recent advances in chronic disease diagnosis and their therapeutic management. Indian J Microbiol. 2025;65(1):189-203. doi: 10.1007/s12088-024-01296-5, PMID 40371020.
Liu Z, Zhou Y, Lu J, Gong T, Ibanez E, Cifuentes A. Microfluidic biosensors for biomarker detection in body fluids: a key approach for early cancer diagnosis. Biomark Res. 2024 Dec;12(1):153. doi: 10.1186/s40364-024-00697-4, PMID 39639411.
Kouhkord A, Naserifar N. Ultrasound assisted microfluidic cell separation: a study on microparticles for enhanced cancer diagnosis. Phys Fluids. 2025 Jan 1;37(1):12028. doi: 10.1063/5.0243667.
Zhao P, Wang J, Chen C, Wang J, Liu G, Nandakumar K. Microfluidic applications in drug development: fabrication of drug carriers and drug toxicity screening. Micromachines. 2022 Jan 27;13(2):200. doi: 10.3390/mi13020200, PMID 35208324.
Bokharaei M. Design and optimization of a microfluidic system for the production of protein drug loadable and magnetically targetable biodegradable microspheres (Doctoral dissertation, University of British Columbia); 1998.
Ren K, Zhou J, Wu H. Materials for microfluidic chip fabrication. Acc Chem Res. 2013 Nov 19;46(11):2396-406. doi: 10.1021/ar300314s, PMID 24245999.
Jenke D. Compatibility of pharmaceutical products and contact materials: safety considerations associated with extractables and leachables. Hoboken, NJ: John Wiley & Sons; 2009. doi: 10.1002/9780470459416.
Iyer V, Yang Z, KO J, Weissleder R, Issadore D. Advancing microfluidic diagnostic chips into clinical use: a review of current challenges and opportunities. Lab Chip. 2022;22(17):3110-21. doi: 10.1039/d2lc00024e, PMID 35674283.
Park J, Kim YW, Jeon HJ. Machine learning driven innovations in microfluidics. Biosensors. 2024 Dec 13;14(12):613. doi: 10.3390/bios14120613, PMID 39727877.
Fujii T. PDMS-based microfluidic devices for biomedical applications. Microelectron Eng. 2002 Jul 1;61-62:907-14. doi: 10.1016/S0167-9317(02)00494-X.
Darren L, Michael W. Microfluidic devices United States Patent US20080003142; 2008 Jan 3.
Gottfried R, Dario B. Method for manufacturing a microfluidic device United States Patent US10675619B2; 2020 Sep 9.
Zheng X, Yu Z. Microfluidic chip, United States Patent US11187224B2; 2021 Nov 30.
Joshua T, William L. Microfluidic chips with one or more vias, United States Patent US11458474B2; 2022 Oct 4.
Tiina M, Annukka K. Microfluidic chip and a method for the manufacture of a microfluidic chip, United States Patent US11759782B2; 2023 Sep 19.
Euan R, Robert T. Continuous flow microfluidic system, United States Patent US20210113974; 2024 Mar 26.
Published
How to Cite
Issue
Section
Copyright (c) 2025 ANKANA ROY, VASANTHARAJU SG, MUDDUKRISHNA BS, BHARGAV ERANTI, SACHIN DATTRAM PAWAR, GUNDAWAR RAVI

This work is licensed under a Creative Commons Attribution 4.0 International License.