COMPUTATIONAL DRUG DESIGN AND MOLECULAR DYNAMICS OF PHENYL BENZAMIDE DERIVATIVES AS PARP-1 INHIBITORS FOR BREAST CANCER THERAPY

Authors

  • PULLA PRUDVI RAJ Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, Nilgiris, Tamil Nadu, India https://orcid.org/0000-0001-6223-0993
  • DIVYA JYOTHI PALATI Department of Pharmacognosy, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, Nilgiris, Tamil Nadu, India https://orcid.org/0000-0002-0637-3276
  • PRAVEEN T. K. Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, Nilgiris, Tamil Nadu, India
  • GOWRAMMA B. Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, Nilgiris, Tamil Nadu, India

DOI:

https://doi.org/10.22159/ijap.2025v17i4.54313

Keywords:

PARP1 inhibitors, Molecular docking, MM-GBSA, Molecular dynamics, ADMET, Breast cancer, Drug discovery

Abstract

Objective: Poly (ADP-ribose) polymerase-1 (PARP1) plays a vital role in Deoxyribonucleic Acid (DNA) repair and cell survival. Given its importance in cancer progression, PARP1 inhibitors are promising therapeutic agents. This study aims to design and evaluate 3-((3,4-dihydroisoquinolin-2(1H)-yl) sulfonyl)-N-phenyl benzamide derivatives as potential PARP1 inhibitors using computational approaches.

Methods: Molecular docking was performed to assess the binding affinity of the designed compounds with PARP1. Molecular Mechanics-Generalized Born Surface Area (MM-GBSA) calculations were used to validate binding free energy and stability. Molecular dynamics (MD) simulations analyzed complex stability over time.

Results: Docking analysis showed that compound 2D had a Glide score of-6.53 kcal/mol, comparable to Olaparib (-6.46 kcal/mol). Key interactions with Tyr896, Arg878, Asp766, and Ser904 contributed to its stability. MD simulations confirmed minimal Root mean Square Deviation (RMSD) (1.2 to 2.7 Å) and Root mean Square Fluctuation (RMSF) (0.5 to 0.9 Å) fluctuations, indicating strong binding stability. Binding free energy analysis showed that compound 2D (-87.20 kcal/mol) exhibited a binding affinity close to the standard drug (Olaparib) (-88.81 kcal/mol).

Conclusion: Compound 2D demonstrated strong and stable interactions with PARP1, comparable or superior to Olaparib. These findings suggest that compound 2D is a promising lead candidate for PARP1-targeted therapy, warranting further preclinical and biological validation.

References

Sachdev E, Tabatabai R, Roy V, Rimel BJ, Mita MM. PARP inhibition in cancer: an update on clinical development. Target Oncol. 2019;14(6):657-79. doi: 10.1007/s11523-019-00680-2, PMID 31625002.

Mateo J, Lord CJ, Serra V, Tutt A, Balmana J, Castroviejo Bermejo M. A decade of clinical development of PARP inhibitors in perspective. Ann Oncol. 2019 Sep 1;30(9):1437-47. doi: 10.1093/annonc/mdz192, PMID 31218365.

Engbrecht M, Mangerich A. The nucleolus and PARP1 in cancer biology. Cancers. 2020 Jul 6;12(7):1813. doi: 10.3390/cancers12071813, PMID 32640701.

Wang L, Liang C, Li F, Guan D, Wu X, Fu X. PARP1 in carcinomas and PARP1 inhibitors as antineoplastic drugs. Int J Mol Sci. 2017 Oct 8;18(10):2111. doi: 10.3390/ijms18102111, PMID 28991194.

McCann KE, Hurvitz SA. Advances in the use of PARP inhibitor therapy for breast cancer. Drugs Context. 2018;7:212540. doi: 10.7573/dic.212540, PMID 30116283.

Raj PP, Lakshmanan K, Byran G, Rajagopal K, Krishnamurthy PT, Palati DJ. Recent PARP inhibitor advancements in cancer therapy: a review. Curr Enzyme Inhib. 2022 Jul 1;18(2):92-104. doi: 10.2174/1573408018666220321115033.

Jiang X, Li X, Li W, Bai H, Zhang Z. PARP inhibitors in ovarian cancer: sensitivity prediction and resistance mechanisms. J Cell Mol Med. 2019 Apr;23(4):2303-13. doi: 10.1111/jcmm.14133, PMID 30672100.

Jagtap P, Szabo C. Poly(ADP-ribose) polymerase and the therapeutic effects of its inhibitors. Nat Rev Drug Discov. 2005 May 1;4(5):421-40. doi: 10.1038/nrd1718, PMID 15864271.

Langelier MF, Planck JL, Roy S, Pascal JM. Structural basis for DNA damage dependent poly(ADP-ribosyl)ation by human PARP-1. Science. 2012 May 11;336(6082):728-32. doi: 10.1126/science.1216338, PMID 22582261.

Tao Z, Gao P, Hoffman DW, Liu HW. Domain C of human poly(ADP-ribose) polymerase-1 is important for enzyme activity and contains a novel zinc ribbon motif. Biochemistry. 2008 May 27;47(21):5804-13. doi: 10.1021/bi800018a, PMID 18452307.

Ray Chaudhuri A, Nussenzweig A. The multifaceted roles of PARP1 in DNA repair and chromatin remodelling. Nat Rev Mol Cell Biol. 2017 Oct;18(10):610-21. doi: 10.1038/nrm.2017.53, PMID 28676700.

Eustermann S, Wu WF, Langelier MF, Yang JC, Easton LE, Riccio AA. Structural basis of detection and signaling of DNA single-strand breaks by human PARP-1. Mol Cell. 2015 Dec 3;60(5):742-54. doi: 10.1016/j.molcel.2015.10.032, PMID 26626479.

Shall S. Proceedings: experimental manipulation of the specific activity of poly(ADP-ribose) polymerase. J Biochem. 1975 Jan 1;77(1):2. PMID 166073.

Purnell MR, Whish WJ. Novel inhibitors of poly(ADP-ribose) synthetase. Biochem J. 1980;185(3):775-7. doi: 10.1042/bj1850775.

Terada M, Fujiki H, Marks PA, Sugimura T. Induction of erythroid differentiation of murine erythroleukemia cells by nicotinamide and related compounds. Proc Natl Acad Sci USA. 1979 Dec;76(12):6411-4. doi: 10.1073/pnas.76.12.6411, PMID 230509.

Shen Y, Rehman FL, Feng Y, Boshuizen J, Bajrami I, Elliott R. BMN 673, a novel and highly potent PARP1/2 inhibitor for the treatment of human cancers with DNA repair deficiency. Clin Cancer Res. 2013 Sep 15;19(18):5003-15. doi: 10.1158/1078-0432.CCR-13-1391, PMID 23881923.

Rose M, Burgess JT, O Byrne K, Richard DJ, Bolderson E. PARP inhibitors: clinical relevance mechanisms of action and tumor resistance. Front Cell Dev Biol. 2020 Sep 9;8:564601. doi: 10.3389/fcell.2020.564601, PMID 33015058.

Bhargavi Pulukuri D, Babu Penke V, Jyothi Palati D, Raj Pulla P, Kalakotla S, Lolla S. BRCA biological functions. In: T. Valarmathi M, editor. BRCA1 and BRCA2 mutations diagnostic and therapeutic implications. IntechOpen; 2023. doi: 10.5772/intechopen.107406.

Dockery LE, Gunderson CC, Moore KN. Rucaparib: the past present and future of a newly approved PARP inhibitor for ovarian cancer. Onco Targets Ther. 2017 Jun 19;10:3029-37. doi: 10.2147/OTT.S114714, PMID 28790837.

Curtin NJ, Szabo C. Therapeutic applications of PARP inhibitors: anticancer therapy and beyond. Mol Aspects Med. 2013 Dec 1;34(6):1217-56. doi: 10.1016/j.mam.2013.01.006, PMID 23370117.

Murai J, Huang SY, Das BB, Renaud A, Zhang Y, Doroshow JH. Trapping of PARP1 and PARP2 by clinical PARP inhibitors. Cancer Res. 2012 Nov 1;72(21):5588-99. doi: 10.1158/0008-5472.CAN-12-2753, PMID 23118055.

Zhou Y, Tang S, Chen T, Niu MM. Structure-based pharmacophore modeling virtual screening molecular docking and biological evaluation for identification of potential poly (ADP-ribose) polymerase-1 (PARP-1) inhibitors. Molecules. 2019 Nov 22;24(23):4258. doi: 10.3390/molecules24234258, PMID 31766720.

Griguolo G, Dieci MV, Guarneri V, Conte P. Olaparib for the treatment of breast cancer. Expert Rev Anticancer Ther. 2018 Jun 3;18(6):519-30. doi: 10.1080/14737140.2018.1458613, PMID 29582690.

Mirza MR, Monk BJ, Herrstedt J, Oza AM, Mahner S, Redondo A. Niraparib maintenance therapy in platinum-sensitive recurrent ovarian cancer. N Engl J Med. 2016 Dec 1;375(22):2154-64. doi: 10.1056/NEJMoa1611310, PMID 27717299.

Litton JK, Rugo HS, Ettl J, Hurvitz SA, Goncalves A, Lee KH. Talazoparib in patients with advanced breast cancer and a germline BRCA mutation. N Engl J Med. 2018 Aug 23;379(8):753-63. doi: 10.1056/NEJMoa1802905, PMID 30110579.

Coleman RL, Fleming GF, Brady MF, Swisher EM, Steffensen KD, Friedlander M. Veliparib with first-line chemotherapy and as maintenance therapy in ovarian cancer. N Engl J Med. 2019 Dec 19;381(25):2403-15. doi: 10.1056/NEJMoa1909707, PMID 31562800.

Wang L, Yang C, Xie C, Jiang J, Gao M, Fu L. Pharmacologic characterization of fluzoparib a novel poly(ADP‐ribose) polymerase inhibitor undergoing clinical trials. Cancer Sci. 2019 Mar;110(3):1064-75. doi: 10.1111/cas.13947, PMID 30663191.

Hopkins TA, Ainsworth WB, Ellis PA, Donawho CK, DiGiammarino EL, Panchal SC. PARP1 trapping by PARP inhibitors drives cytotoxicity in both cancer cells and healthy bone marrow. Mol Cancer Res. 2019 Feb;17(2):409-19. doi: 10.1158/1541-7786.MCR-18-0138, PMID 30429212.

Kumar BK, Faheem N, Sekhar KV, Ojha R, Prajapati VK, Pai A. Pharmacophore-based virtual screening molecular docking molecular dynamics and MM-GBSA approach for identification of prospective SARS-CoV-2 inhibitor from natural product databases. J Biomol Struct Dyn. 2022;40(3):1363-86. doi: 10.1080/07391102.2020.1824814, PMID 32981461.

Govindarasu MY, Palani MA, Vaiyapuri MA. In silico docking studies on kaempferitrin with diverse inflammatory and apoptotic proteins functional approach towards the colon cancer. Int J Pharm Pharm Sci. 2017;9(9):199. doi: 10.22159/ijpps.2017v9i9.20500.

Baqi MA, Jayanthi K, Rajeshkumar R. Molecular docking insights into probiotics SAKACIN P and SAKACIN a as potential inhibitors of the COX-2 pathway for colon cancer therapy. Int J App Pharm. 2025;17(1):153-60. doi: 10.22159/ijap.2025v17i1.52476.

Redhu S, Jindal A. Molecular modelling: a new scaffold for drug design. Int J Pharm Pharm Sci. 2013;21:5(5 Suppl 1):5-8.

Shaikh SI, Zaheer Z, Mokale SN, Lokwani DK. Development of new pyrazole hybrids as antitubercular agents: synthesis biological evaluation and molecular docking study. Int J Pharm Pharm Sci. 2017;9(10):50-6. doi: 10.22159/ijpps.2017v9i11.20469.

Jorgensen WL, Maxwell DS, Tirado Rives J. Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J Am Chem Soc. 1996 Nov 13;118(45):11225-36. doi: 10.1021/ja9621760.

Mark P, Nilsson L. Structure and dynamics of the TIP3P, SPC, and SPC/E water models at 298 K. J Phys Chem A. 2001 Nov 1;105(43):9954-60. doi: 10.1021/jp003020w.

Kalibaeva G, Ferrario M, Ciccotti G. Constant pressure constant temperature molecular dynamics: a correct constrained NPT ensemble using the molecular virial. Mol Phys. 2003 Mar 20;101(6):765-78. doi: 10.1080/0026897021000044025.

Hirlekar BU, Nuthi A, Singh KD, Murty US, Dixit VA. An overview of compound properties multiparameter optimization and computational drug design methods for PARP-1 inhibitor drugs. Eur J Med Chem. 2023 Apr 5;252:115300. doi: 10.1016/j.ejmech.2023.115300, PMID 36989813.

Li J, Zhou N, Cai P, Bao J. In silico screening identifies a novel potential PARP1 inhibitor targeting synthetic lethality in cancer treatment. Int J Mol Sci. 2016 Feb 19;17(2):258. doi: 10.3390/ijms17020258, PMID 26907257.

Sofia MJ, Moore TW, Pomper MG. Annotated bibliography of Prof. John A. Katzenellenbogen, PhD. J Med Chem. 2025 Feb 27;68(4):3911-42. doi: 10.1021/acs.jmedchem.5c00224, PMID 40012520.

Jayanthi K, Ahmed SS, BAQI MA, Afzal Azam MA. Molecular docking dynamics of selected benzylidene amino phenyl acetamides as TMK inhibitors using high throughput virtual screening (HTVS). Int J App Pharm. 2024;16(3):290-7. doi: 10.22159/ijap.2024v16i3.50023.

Cao R. Free energy calculation provides insight into the action mechanism of selective PARP-1 inhibitor. J Mol Model. 2016 Apr;22(4):74. doi: 10.1007/s00894-016-2952-x, PMID 26969680.

Ambur Sankaranarayanan R, Florea A, Allekotte S, Vogg AT, Maurer J, Schafer L. PARP targeted auger emitter therapy with [125I]PARPi-01 for triple-negative breast cancer. EJNMMI Res. 2022 Sep 14;12(1):60. doi: 10.1186/s13550-022-00932-9, PMID 36104637.

Li J, Zhou N, Cai P, Bao J. In silico screening identifies a novel potential PARP1 inhibitor targeting synthetic lethality in cancer treatment. Int J Mol Sci. 2016 Feb 19;17(2):258. doi: 10.3390/ijms17020258, PMID 26907257.

Published

07-07-2025

How to Cite

RAJ, P. P., PALATI, D. J., T. K., P., & B., G. (2025). COMPUTATIONAL DRUG DESIGN AND MOLECULAR DYNAMICS OF PHENYL BENZAMIDE DERIVATIVES AS PARP-1 INHIBITORS FOR BREAST CANCER THERAPY. International Journal of Applied Pharmaceutics, 17(4), 387–394. https://doi.org/10.22159/ijap.2025v17i4.54313

Issue

Section

Original Article(s)

Similar Articles

<< < 4 5 6 7 8 > >> 

You may also start an advanced similarity search for this article.