COMPARATIVE EVALUATION OF FUSED DEPOSITION MODELING AND STEREOLITHOGRAPHY FOR 3D PRINTING OF PERSONALIZED ORAL DRUG DELIVERY SYSTEMS

Authors

  • HIMANSHU THAKUR Department of Pharmaceutics, School of Pharmacy, Parul University, Post Limda, Waghodia, Vadodara, Gujarat-391760, India
  • MEENAKSHI PATEL Department of Pharmaceutics, School of Pharmacy, Parul University, Post Limda, Waghodia, Vadodara, Gujarat-391760, India https://orcid.org/0000-0001-6870-8273
  • BHARGAVI MISTRY Department of Pharmaceutics, School of Pharmacy, Parul University, Post Limda, Waghodia, Vadodara, Gujarat-391760, India

DOI:

https://doi.org/10.22159/ijap.2025v17i5.54326

Keywords:

3D printing, Additive manufacturing, Fused deposition modelling, Stereolithography, Personalized medicine

Abstract

Additive manufacturing, particularly three-dimensional printing (3DP), is rapidly transforming drug formulation and production in pharmaceutical sciences. This review focuses on two prominent 3DP techniques-fused deposition modeling (FDM) and stereolithography (SLA)-for the fabrication of solid oral dosage forms with controlled drug release. FDM offers advantages such as cost-effectiveness and compatibility with pharmaceutical-grade polymers, while SLA provides superior resolution and the ability to create complex, drug-loaded matrices. Despite these promising capabilities, challenges, including material limitations, regulatory hurdles, and the need for process optimization, hinder widespread clinical adoption. Recent advancements in material science and printing technology are beginning to address these issues, paving the way for more reliable and personalized drug delivery systems. This review summarizes the fundamental principles, key advantages, limitations, and ongoing innovations in FDM and SLA for pharmaceutical applications. Future directions include overcoming regulatory barriers, expanding material options, and integrating 3DP into mainstream personalized medicine.

References

1. Hsiao WK, Lorber B, Reitsamer H, Khinast J. 3D printing of oral drugs: a new reality or hype? Expert Opin Drug Deliv. 2018 Jan;15(1):1-4. doi: 10.1080/17425247.2017.1371698, PMID 28836459.

2. Scoutaris N, Ross S, Douroumis D. Current trends on medical and pharmaceutical applications of inkjet printing technology. Pharm Res. 2016 Aug;33(8):1799-816. doi: 10.1007/s11095-016-1931-3, PMID 27174300.

3. Zhang J, VO AQ, Feng X, Bandari S, Repka MA. Pharmaceutical additive manufacturing: a novel tool for complex and personalized drug delivery systems. AAPS PharmSciTech. 2018 Nov;19(8):3388-402. doi: 10.1208/s12249-018-1097-x, PMID 29943281, PMCID PMC6283689.

4. Wang S, Chen X, Han X, Hong X, Li X, Zhang H. A review of 3D printing technology in pharmaceutics: technology and applications now and future. Pharmaceutics. 2023 Jan 26;15(2):36839738. doi: 10.3390/pharmaceutics15020416.

5. Abbasi M, Vaz P, Silva J, Martins P. Head to head evaluation of FDM and SLA in additive manufacturing: performance cost and environmental perspectives. Appl Sci. 2025 Feb 19;15(4):2245. doi: 10.3390/app15042245.

6. Deshmane S, Kendre P, Mahajan H, Jain S. Stereolithography 3D printing technology in pharmaceuticals: a review. Drug Dev Ind Pharm. 2021 Sep;47(9):1362-72. doi: 10.1080/03639045.2021.1994990, PMID 34663145.

7. Lambert KF, Whitehead M, Betz M, Nutt J, Dubose C. An overview of 3-D printing for medical applications. Radiol Technol. 2022 Mar;93(4):356-67. PMID 35260484.

8. Andreadis II, Gioumouxouzis CI, Eleftheriadis GK, Fatouros DG. Correction: andreadis. The advent of a new era in digital healthcare: a role for 3d printing technologies in drug manufacturing? Pharmaceutics. 2022;14(12):2782. doi: 10.3390/pharmaceutics14122782, PMID 36559340.

9. Reddy CV, VB, Venkatesh MP, Pramod Kumar TM. First FDA approved 3D printed drug paved new path for increased precision in patient care. ACCTRA. 2020;7(2):93-103. doi: 10.2174/2213476X07666191226145027.

10. Serrano DR, Kara A, Yuste I, Luciano FC, Ongoren B, Anaya BJ. 3D printing technologies in personalized medicine nanomedicines and biopharmaceuticals. Pharmaceutics. 2023 Jan 17;15(2):313. doi: 10.3390/pharmaceutics15020313, PMID 36839636, PMCID PMC9967161.

11. PubChem. Bethesda (MD): national library of medicine (US) national center for biotechnology information. Pubchem patent summary for us-6027324-a apparatus for production of three dimensional objects by stereolithography; 2004. Available from: https://pubchem.ncbi.nlm.nih.gov/patent/US-6027324-A. [Last accessed on 30 Apr 2025].

12. Husna A, Ashrafi S, Tomal AA, Tuli NT, Bin Rashid AB. Recent advancements in stereolithography (SLA) and their optimization of process parameters for sustainable manufacturing. Hybrid Adv. 2024 Oct 11;7:100307. doi: 10.1016/j.hybadv.2024.100307.

13. Hull CW, Spence ST, Albert DJ. Method and apparatus for production of high resolution three dimensional objects by stereolithography; 1993.

14. Prasad LK, Smyth H. 3D Printing technologies for drug delivery: a review. Drug Dev Ind Pharm. 2016;42(7):1019-31. doi: 10.3109/03639045.2015.1120743, PMID 26625986.

15. Tan YJ, Yong WP, Kochhar JS, Khanolkar J, Yao X, Sun Y. On demand fully customizable drug tablets via 3D printing technology for personalized medicine. J Control Release. 2020 Jun 10;322:42-52. doi: 10.1016/j.jconrel.2020.02.046, PMID 32145267.

16. Lanno V, Vurpillot S, Prillieux S, Espeau P. Pediatric formulations developed by extrusion-based 3D printing: from past discoveries to future prospects. Pharmaceutics. 2024 Mar 22;16(4):441. https://doi.org/10.3390/pharmaceutics16040441. PMID: 38675103.

17. Nashed N, Lam M, Ghafourian T, Pausas L, Jiri M, Majumder M. An insight into the impact of thermal process on dissolution profile and physical characteristics of theophylline tablets made through 3D printing compared to conventional methods. Biomedicines. 2022 Jun 6;10(6):1335. doi: 10.3390/biomedicines10061335, PMID 35740357, PMCID PMC9219830.

18. Khosravani MR, Reinicke T. On the environmental impacts of 3D printing technology. Appl Mater Today. 2020 May 17;20:100689. doi: 10.1016/j.apmt.2020.100689.

19. Dumpa N, Butreddy A, Wang H, Komanduri N, Bandari S, Repka MA. 3D printing in personalized drug delivery: an overview of hot melt extrusion based fused deposition modeling. Int J Pharm. 2021 May 1;600:120501. doi: 10.1016/j.ijpharm.2021.120501, PMID 33746011, PMCID PMC8089048.

20. Skowyra J, Pietrzak K, Alhnan MA. Fabrication of extended-release patient-tailored prednisolone tablets via fused deposition modelling (FDM) 3D printing. European Journal of Pharmaceutical Sciences. 2015 Feb 20;68:11-7. https://doi.org/10.1016/j.ejps.2014.11.009. PMID: 25460545

21. Basa B, Jakab G, Kallai Szabo N, Borbas B, Fulop V, Balogh E. Evaluation of biodegradable PVA-based 3D printed carriers during dissolution. Materials (Basel). 2021 Mar 11;14(6):1350. doi: 10.3390/ma14061350, PMID 33799585, PMCID PMC7998734.

22. Sun X, Zhou J, Wang Q, Shi J, Wang H. PVA fibre reinforced high strength cementitious composite for 3D printing: mechanical properties and durability. Addit Manuf. 2022 Jan;49:102500. doi: 10.1016/j.addma.2021.102500.

23. Skowyra J, Pietrzak K, Alhnan MA. Fabrication of extended-release patient-tailored prednisolone tablets via fused deposition modelling (FDM) 3D printing. European Journal of Pharmaceutical Sciences. 2015 Feb 20;68:11-7. https://doi.org/10.1016/j.ejps.2014.11.009. PMID: 25460545.

24. Paccione N, Guarnizo Herrero V, Ramalingam M, Larrarte E, Pedraz JL. Application of 3D printing on the design and development of pharmaceutical oral dosage forms. J Control Release. 2024 Sep;373:463-80. doi: 10.1016/j.jconrel.2024.07.035, PMID 39029877.

25. Gultekin HE, Tort S, Acarturk F. Fabrication of three dimensional printed tablets in flexible doses: a comprehensive study from design to evaluation. J Drug Deliv Sci Technol. 2022 Jun 21;74:103538. doi: 10.1016/j.jddst.2022.103538.

26. Merck, 2023. Candurin Gold Sheen Specification. Available: https://surface-portal.merckgroup.com/BR/en/product/PM/120608

27. Zhou LY, Fu J, He Y. A review of 3D printing technologies for soft polymer materials. Adv Funct Materials. 2020 Apr 29;30(28). doi: 10.1002/adfm.202000187.

28. Nukala PK, Palekar S, Solanki N, Fu Y, Patki M, Shohatee AA. Investigating the application of FDM 3D printing pattern in preparation of patient tailored dosage forms. J 3D Print Med. 2019;3(1):23-37. doi: 10.2217/3dp-2018-0028.

29. Curti C, Kirby DJ, Russell CA. Current formulation approaches in design and development of solid oral dosage forms through three dimensional printing. Prog Addit Manuf. 2020 Mar 21;5(2):111-23. doi: 10.1007/s40964-020-00127-5.

30. Wang J, Zhang Y, Aghda NH, Pillai AR, Thakkar R, Nokhodchi A. Emerging 3D printing technologies for drug delivery devices: current status and future perspective. Adv Drug Deliv Rev. 2021 Jul;174:294-316. doi: 10.1016/j.addr.2021.04.019, PMID 33895212.

31. Patel A, Taufik M. Extrusion based technology in additive manufacturing: a comprehensive review. Arab J Sci Eng. 2024;49(2):1309-42. doi: 10.1007/s13369-022-07539-1.

32. Jin Z, He C, Fu J, Han Q, He Y. Balancing the customization and standardization: exploration and layout surrounding the regulation of the growing field of 3D-printed medical devices in China. Biodes Manuf. 2022;5(3):580-606. doi: 10.1007/s42242-022-00187-2, PMID 35194519, PMCID PMC8853031.

33. Li L, McGuan R, Isaac R, Kavehpour P, Candler R. Improving precision of material extrusion 3D printing by in situ monitoring & predicting 3D geometric deviation using conditional adversarial networks. Addit Manuf. 2021 Feb;38:101695. doi: 10.1016/j.addma.2020.101695.

34. Borandeh S, Van Bochove B, Teotia A, Seppala J. Polymeric drug delivery systems by additive manufacturing. Adv Drug Deliv Rev. 2021 Jun;173:349-73. doi: 10.1016/j.addr.2021.03.022, PMID 33831477.

35. Jadhav A, Jadhav VS. A review on 3D printing: an additive manufacturing technology. Mater Today Proc. 2022 Jan 1;62:2094-9. doi: 10.1016/j.matpr.2022.02.558.

36. Kaul RP, Sagar S. Role of 3D Image Processing and Printing in the Diagnosis and Treatment Planning for Maxillofacial Surgery, 2025. DOI: 10.5772/intechopen.1009516.

37. Lakkala P, Munnangi SR, Bandari S, Repka M. Additive manufacturing technologies with emphasis on stereolithography 3D printing in pharmaceutical and medical applications: a review. Int J Pharm X. 2023 Jan 3;5:100159. doi: 10.1016/j.ijpx.2023.100159, PMID 36632068, PMCID PMC9827389.

38. PubChem. Bethesda (MD): National Library of Medicine (US). National center for biotechnology information. PubChem patent summary for US-6027324-a apparatus for production of three dimensional objects by stereolithography; 2004. Available from: https://pubchem.ncbi.nlm.nih.gov/patent/US-6027324-A. [Last accessed on 30 Apr 2025].

39. Mukhtarkhanov M, Perveen A, Talamona D. Application of stereolithography based 3D printing technology in investment casting. Micromachines (Basel). 2020 Oct 19;11(10):946. doi: 10.3390/mi11100946, PMID 33086736, PMCID PMC7589843.

40. Quan H, Zhang T, Xu H, Luo S, Nie J, Zhu X. Photo-curing 3D printing technique and its challenges. Bioact Mater. 2020 Jan 22;5(1):110-5. doi: 10.1016/j.bioactmat.2019.12.003.

41. Ge Q, Li Z, Wang Z, Kowsari K, Zhang W, He X. Projection micro stereolithography based 3D printing and its applications. Int J Extreme Manuf. 2020 Apr 27;2(2):22004. doi: 10.1088/2631-7990/ab8d9a.

42. Ananth KP, Jayram ND. A comprehensive review of 3D printing techniques for biomaterial based scaffold fabrication in bone tissue engineering. Annals of 3D Printed Medicine. 2023 Nov 23;13:100141. doi: 10.1016/j.stlm.2023.100141.

43. Maines EM, Porwal MK, Ellison CJ, Reineke TM. Sustainable advances in SLA/DLP 3D printing materials and processes. Green Chem. 2021 Jan 1;23(18):6863-97. doi: 10.1039/D1GC01489G.

44. Zennifer A, Manivannan S, Sethuraman S, Kumbar SG, Sundaramurthi D. 3D bioprinting and photocrosslinking: emerging strategies and future perspectives. Biomater Adv. 2022 Mar;134:112576. doi: 10.1016/j.msec.2021.112576, PMID 35525748, PMCID PMC10350869.

45. Goyanes A, Robles Martinez P, Buanz A, Basit AW, Gaisford S. Effect of geometry on drug release from 3D printed tablets. Int J Pharm. 2015 Oct 30;494(2):657-63. doi: 10.1016/j.ijpharm.2015.04.069, PMID 25934428.

46. Pawar R, Pawar A. 3D printing of pharmaceuticals: approach from bench scale to commercial development. Futur J Pharm Sci. 2022;8(1):48. doi: 10.1186/s43094-022-00439-z, PMID 36466365, PMCID PMC9702622.

47. Konta AA, Garcia Pina M, Serrano DR. Personalised 3D printed medicines: which techniques and polymers are more successful? Bioengineering (Basel). 2017 Sep 22;4(4):79. doi: 10.3390/bioengineering4040079, PMID 28952558, PMCID PMC5746746.

48. Arrigoni C, Gilardi M, Bersini S, Candrian C, Moretti M. Bioprinting and organ on chip applications towards personalized medicine for bone diseases. Stem Cell Rev Rep. 2017 Jun;13(3):407-17. doi: 10.1007/s12015-017-9741-5, PMID 28589446.

49. Karakurt I, Aydogdu A, Cikrıkcı S, Orozco J, Lin L. Stereolithography (SLA) 3D printing of ascorbic acid loaded hydrogels: a controlled release study. Int J Pharm. 2020 Jun 30;584:119428. doi: 10.1016/j.ijpharm.2020.119428, PMID 32445906.

50. Wickramasinghe S, Do T, Tran P. FDM based 3D printing of polymer and associated composite: a review on mechanical properties defects and treatments. Polymers (Basel). 2020 Jul 10;12(7):1529. doi: 10.3390/polym12071529, PMID 32664374, PMCID PMC7407763.

51. Kafle A, Luis E, Silwal R, Pan HM, Shrestha PL, Bastola AK. 3D/4D printing of polymers: fused deposition modelling (FDM) selective laser sintering (SLS) and stereolithography (SLA). Polymers (Basel). 2021 Sep 15;13(18):3101. doi: 10.3390/polym13183101, PMID 34578002, PMCID PMC8470301.

52. Stansbury JW, Idacavage MJ. 3D printing with polymers: challenges among expanding options and opportunities. Dent Mater. 2016 Jan;32(1):54-64. doi: 10.1016/j.dental.2015.09.018, PMID 26494268.

53. Ligon SC, Liska R, Stampfl J, Gurr M, Mulhaupt R. Polymers for 3D printing and customized additive manufacturing. Chem Rev. 2017 Aug 9;117(15):10212-90. doi: 10.1021/acs.chemrev.7b00074, PMID 28756658, PMCID PMC5553103.

54. Puza F, Lienkamp K. 3D printing of polymer hydrogels from basic techniques to programmable actuation. Adv Funct Materials. 2022 Jul 24;32(39). doi: 10.1002/adfm.202205345.

55. Bose S, Ke D, Sahasrabudhe H, Bandyopadhyay A. Additive manufacturing of biomaterials. Prog Mater Sci. 2018 Apr;93:45-111. doi: 10.1016/j.pmatsci.2017.08.003, PMID 31406390.

56. Prajapati SK, Jain A, Jain A, Jain S. Biodegradable polymers and constructs: a novel approach in drug delivery. Eur Polym J. 2019 Aug 16;120:109191. doi: 10.1016/j.eurpolymj.2019.08.018.

57. Jain A, Bansal KK, Tiwari A, Rosling A, Rosenholm JM. Role of polymers in 3D printing technology for drug delivery an overview. Curr Pharm Des. 2018;24(42):4979-90. doi: 10.2174/1381612825666181226160040, PMID 30585543.

58. Cardoso PH, Araujo ES. An approach to 3D printing techniques polymer materials and their applications in the production of drug delivery systems. Compounds. 2024 Jan 17;4(1):71-105. doi: 10.3390/compounds4010004.

59. Pugliese R, Beltrami B, Regondi S, Lunetta C. Polymeric biomaterials for 3D printing in medicine: an overview. Annals of 3D Printed Medicine. 2021 Apr 9;2:100011. doi: 10.1016/j.stlm.2021.100011.

60. Mallakpour S, Tabesh F, Hussain CM. A new trend of using poly(vinyl alcohol) in 3D and 4D printing technologies: process and applications. Adv Colloid Interface Sci. 2022 Mar;301:102605. doi: 10.1016/j.cis.2022.102605, PMID 35144173.

61. Peng H, Han B, Tong T, Jin X, Peng Y, Guo M. 3D printing processes in precise drug delivery for personalized medicine. Biofabrication. 2024 Apr 17;16(3). doi: 10.1088/1758-5090/ad3a14, PMID 38569493, PMCID PMC11164598.

62. Musa BH, Hameed NJ. Study of the mechanical properties of polyvinyl alcohol/starch blends. Mater Today Proc. 2020;20:439-42. doi: 10.1016/j.matpr.2019.09.161.

63. Peng Z, Kong LX. A thermal degradation mechanism of polyvinyl alcohol/silica nanocomposites. Polymer Degradation and Stability. 2007 Jun 1;92(6):1061-71. https://doi.org/10.1016/j.polymdegradstab.2007.02.012.

64. Crișan AG, Porfire A, Ambrus R, Katona G, Rus LM, Porav AS, Ilyés K, Tomuță I. Polyvinyl alcohol-based 3D printed tablets: novel insight into the influence of polymer particle size on filament preparation and drug release performance. Pharmaceuticals. 2021 May 1;14(5):418. https://doi.org/10.3390/ph14050418.

65. Krause J, Bogdahn M, Schneider F, Koziolek M, Weitschies W. Design and characterization of a novel 3D printed pressure controlled drug delivery system. Eur J Pharm Sci. 2019 Dec 1;140:105060. doi: 10.1016/j.ejps.2019.105060, PMID 31499171.

66. Bianchi M, Pegoretti A, Fredi G. An overview of poly(vinyl alcohol) and poly(vinyl pyrrolidone) in pharmaceutical additive manufacturing. J Vinyl Addit Technol. 2023 Feb 7;29(2):223-39. doi: 10.1002/vnl.21982.

67. Windolf H, Chamberlain R, Quodbach J. Dose independent drug release from 3D printed oral medicines for patient-specific dosing to improve therapy safety. Int J Pharm. 2022 Mar 25;616:121555. doi: 10.1016/j.ijpharm.2022.121555, PMID 35131358.

68. D’souza AA, Shegokar R. Polyethylene glycol (PEG): a versatile polymer for pharmaceutical applications. Expert opinion on drug delivery. 2016 Sep 1;13(9):1257-75. https://doi.org/10.1080/17425247.2016.1182485. PMID: 27116988.

69. Kuhn AM. Optimizing the mechanical properties of a PLA/PCL thin film through the inclusion of PEG as a plasticizing agent (Master's thesis, University of Cincinnati).

70. Masutani K, Kimura Y. Chapter 1: PLA synthesis. From the monomer to the Polymer. Jimenez A, Peltzer M, Ruseckaite R, editors. Poly(lactic acid) science and technology. Cambridge: Royal Society of Chemistry; 2014. p. 1-36. doi: 10.1039/9781782624806-00001.

71. Silva AT, Cardoso BC, Silva ME, Freitas RF, Sousa RG. Synthesis characterization and study of PLGA copolymer in vitro degradation. J Biomater Nanobiotechnol. 2015;6(1):8-19. doi: 10.4236/jbnb.2015.61002.

72. Samantaray PK, Little A, Haddleton DM, McNally T, Tan B, Sun Z, Huang W, Ji Y, Wan C. Poly (glycolic acid)(PGA): A versatile building block expanding high performance and sustainable bioplastic applications. Green Chemistry. 2020;22(13):4055-81. https://doi.org/10.1039/D0GC01394C.

73. Jenkins M, Stamboulis A. Durability and reliability of medical polymers. Woodhead Publishing Limited; 2012. doi: 10.1533/9780857096517.

74. Li G, Dobryden I, Salazar Sandoval EJ, Johansson M, Claesson PM. Load dependent surface nanomechanical properties of poly-HEMA hydrogels in aqueous medium. Soft Matter. 2019 Oct 14;15(38):7704-14. doi: 10.1039/c9sm01113g, PMID 31508653.

75. Zare M, Bigham A, Zare M, Luo H, Rezvani Ghomi E, Ramakrishna S. pHEMA: an overview for biomedical applications. Int J Mol Sci. 2021 Jun 15;22(12):6376. doi: 10.3390/ijms22126376, PMID 34203608, PMCID PMC8232190.

76. De Nitto S, Serafin A, Karadimou A, Schmalenberger A, Mulvihill JJ, Collins MN. Development and characterization of 3D-printed electroconductive pHEMA-co-MAA NP-laden hydrogels for tissue engineering. Bio Des Manuf. 2024 Apr 25;7(3):262-76. doi: 10.1007/s42242-024-00272-8.

77. Hong KH, Jeon YS, Kim JH. Preparation and properties of modified PHEMA hydrogels containing thermo responsive pluronic component. Macromol Res. 2009 Jan 1;17(1):26-30. doi: 10.1007/BF03218597.

78. Sharma MB, Abdelmohsen HA, Kap O, Kilic V, Horzum N, Cheneler D. Poly(2-hydroxyethyl methacrylate) hydrogel based microneedles for bioactive release. Bioengineering (Basel). 2024 Jun 25;11(7):649. doi: 10.3390/bioengineering11070649, PMID 39061731, PMCID PMC11273839.

79. Zare M, Bigham A, Zare M, Luo H, Rezvani Ghomi E, Ramakrishna S. pHEMA: an overview for biomedical applications. Int J Mol Sci. 2021 Jun 15;22(12):6376. doi: 10.3390/ijms22126376, PMID 34203608, PMCID PMC8232190.

80. Unagolla JM, Gaihre B, Jayasuriya AC. In vitro and in vivo evaluation of 3D printed poly(ethylene glycol) dimethacrylate based photocurable hydrogel platform for bone tissue engineering. Macromol Biosci. 2024 Apr;24(4):e2300414. doi: 10.1002/mabi.202300414, PMID 38035771, PMCID PMC11018466.

81. Burke G, Devine DM, Major I. Effect of stereolithography 3D printing on the properties of PEGDMA hydrogels. Polymers (Basel). 2020 Sep 3;12(9):2015. doi: 10.3390/polym12092015, PMID 32899341, PMCID PMC7564751.

82. Chang SY, Lee JZ, Sargur Ranganath AS, Ching T, Hashimoto M. Poly(ethylene-glycol)-dimethacrylate (PEGDMA) composite for stereolithographic bioprinting. Macromol Mater Eng. 2024 Aug 29;309(11). doi: 10.1002/mame.202400143.

83. Chang SY, Ching T, Hashimoto M. Bioprinting using PEGDMA-based hydrogel on DLP printer. Mater Today Proc. 2022 Jan 1;70:179-83. doi: 10.1016/j.matpr.2022.09.017.

84. Chang SY, Lee JZ, Ranganath AS, Ching T, Hashimoto M. 3D bioprinting using poly(ethylene-glycol)-dimethacrylate (PEGDMA) composite. bioRxiv. 2023 Oct 20. doi: 10.1101/2023.10.19.562790.

85. Killion JA, Kehoe S, Geever LM, Devine DM, Sheehan E, Boyd D. Hydrogel/bioactive glass composites for bone regeneration applications: synthesis and characterisation. Mater Sci Eng C Mater Biol Appl. 2013 Oct;33(7):4203-12. doi: 10.1016/j.msec.2013.06.013, PMID 23910334.

86. Shah TV, Vasava DV. A glimpse of biodegradable polymers and their biomedical applications. e-Polymers. 2019 Jun 7;19(1):385-410. doi: 10.1515/epoly-2019-0041.

87. Chen Q, Zou B, Lai Q, Zhu K. SLA-3d printing and compressive strength of PEGDA/nHAP biomaterials. Ceramics International. 2022 Oct 15;48(20):30917-26. https://doi.org/10.1016/j.ceramint.2022.07.047.

88. Healy AV, Fuenmayor E, Doran P, Geever LM, Higginbotham CL, Lyons JG. Additive manufacturing of personalized pharmaceutical dosage forms via stereolithography. Pharmaceutics. 2019 Dec 3;11(12):645. https://doi.org/10.3390/pharmaceutics11120645. PMID: 31816898.

89. Genina N, Boetker JP, Colombo S, Harmankaya N, Rantanen J, Bohr A. Anti-tuberculosis drug combination for controlled oral delivery using 3D printed compartmental dosage forms: from drug product design to in vivo testing. J Control Release. 2017 Dec 28;268:40-8. doi: 10.1016/j.jconrel.2017.10.003, PMID 28993169.

90. Shin S, Kim TH, Jeong SW, Chung SE, Lee DY, Kim DH. Development of a gastroretentive delivery system for acyclovir by 3D printing technology and its in vivo pharmacokinetic evaluation in Beagle dogs. PLOS One. 2019 May 15;14(5):e0216875. doi: 10.1371/journal.pone.0216875, PMID 31091273, PMCID PMC6519832.

91. Khaled SA, Alexander MR, Irvine DJ, Wildman RD, Wallace MJ, Sharpe S. Extrusion 3D printing of paracetamol tablets from a single formulation with tunable release profiles through control of tablet geometry. AAPS PharmSciTech. 2018 Nov;19(8):3403-13. doi: 10.1208/s12249-018-1107-z, PMID 30097806, PMCID PMC6848047.

92. Khaled SA, Alexander MR, Wildman RD, Wallace MJ, Sharpe S, Yoo J. 3D extrusion printing of high drug loading immediate release paracetamol tablets. Int J Pharm. 2018 Mar 1;538(1-2):223-30. doi: 10.1016/j.ijpharm.2018.01.024, PMID 29353082.

93. Okwuosa TC, Stefaniak D, Arafat B, Isreb A, Wan KW, Alhnan MA. A lower temperature FDM 3D printing for the manufacture of patient specific immediate release tablets. Pharm Res. 2016 Nov;33(11):2704-12. doi: 10.1007/s11095-016-1995-0, PMID 27506424.

94. Brambilla CRM, Okafor-Muo OL, Hassanin H, ElShaer A. 3DP Printing of Oral Solid Formulations: A Systematic Review. Pharmaceutics. 2021 Mar 9;13(3):358. doi: 10.3390/pharmaceutics13030358. PMID: 33803163; PMCID: PMC8002067.

95. Palekar S, Nukala PK, Mishra SM, Kipping T, Patel K. Application of 3D printing technology and quality by design approach for development of age appropriate pediatric formulation of baclofen. Int J Pharm. 2019 Feb 10;556:106-16. doi: 10.1016/j.ijpharm.2018.11.062, PMID 30513398.

96. Bendicho-Lavilla C, Rodríguez-Pombo L, Januskaite P, Rial C, Alvarez-Lorenzo C, Basit AW, Goyanes A. Ensuring the quality of 3D printed medicines: Integrating a balance into a pharmaceutical printer for in-line uniformity of mass testing. Journal of Drug Delivery Science and Technology. 2024 Feb 1;92:105337. https://doi.org/10.1016/j.jddst.2024.105337.

97. Wang J, Goyanes A, Gaisford S, Basit AW. Stereolithographic (SLA) 3D printing of oral modified-release dosage forms. Int J Pharm. 2016 Apr 30;503(1-2):207-12. doi: 10.1016/j.ijpharm.2016.03.016. Epub 2016 Mar 11. PMID: 26976500.

98. Kadry H, Wadnap S, Xu C, Ahsan F. Digital light processing (DLP) 3D-printing technology and photoreactive polymers in fabrication of modified release tablets. Eur J Pharm Sci. 2019 Jul 1;135:60-7. doi: 10.1016/j.ejps.2019.05.008, PMID 31108205.

99. Allahham N, Fina F, Marcuta C, Kraschew L, Mohr W, Gaisford S. Selective laser sintering 3D printing of orally disintegrating printlets containing ondansetron. Pharmaceutics. 2020 Jan 30;12(2):110. doi: 10.3390/pharmaceutics12020110, PMID 32019101, PMCID PMC7076455.

100. Infanger S, Haemmerli A, Iliev S, Baier A, Stoyanov E, Quodbach J. Powder bed 3D-printing of highly loaded drug delivery devices with hydroxypropyl cellulose as solid binder. Int J Pharm. 2019 Jan 30;555:198-206. doi: 10.1016/j.ijpharm.2018.11.048. Epub 2018 Nov 17. PMID: 30458260.

101. Pitzanti G, Mathew E, Andrews GP, Jones DS, Lamprou DA. 3D Printing: an appealing technology for the manufacturing of solid oral dosage forms. Journal of Pharmacy and Pharmacology. 2022 Oct 1;74(10):1427-49. https://doi.org/10.1093/jpp/rgab136. PMID: 34529072.

102. Center for Devices and Radiological Health. Technical considerations for additive manufactured medical devices. United States Food And Drug Administration; 2018. Available from: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/technical-considerations-additive-manufactured-medical-devices.

103. Ventola CL. Medical applications for 3D printing: current and projected uses. PT. 2014 Oct;39(10):704-11. PMID 25336867, PMCID PMC4189697.

104. Norman J, Madurawe RD, Moore CM, Khan MA, Khairuzzaman A. A new chapter in pharmaceutical manufacturing: 3D-printed drug products. Adv Drug Deliv Rev. 2017 Jan 1;108:39-50. doi: 10.1016/j.addr.2016.03.001, PMID 27001902.

105. Bhise MG, Patel L, Patel K. 3D printed medical devices: regulatory standards and technological advancements in the usa, canada and singapore a cross-national study. Int J Pharm Investigation. 2024 Jul 1;14(3):888-902. doi: 10.5530/ijpi.14.3.99.

106. Minghetti P, Musazzi UM, Rocco P. Regulatory aspects of 3D printing systems in healthcare. In: fundamentals and future trends of 3D printing in drug delivery. Amsterdam: Elsevier; 2025. p. 305-20. doi: 10.1016/B978-0-443-23645-7.00014-3.

Published

07-09-2025

How to Cite

THAKUR, H., PATEL, M., & MISTRY, B. (2025). COMPARATIVE EVALUATION OF FUSED DEPOSITION MODELING AND STEREOLITHOGRAPHY FOR 3D PRINTING OF PERSONALIZED ORAL DRUG DELIVERY SYSTEMS. International Journal of Applied Pharmaceutics, 17(5), 74–84. https://doi.org/10.22159/ijap.2025v17i5.54326

Issue

Section

Review Article(s)

Similar Articles

<< < 5 6 7 8 9 > >> 

You may also start an advanced similarity search for this article.