DEVELOPMENT OF A METHOD FOR QUALITY CONTROL OF PEPTIDE DRUGS WITHOUT OPENING THE PRIMARY PACKAGING

Authors

  • OLEG V. LEDENEV Department of Biology, Lomonosov Moscow State University, Moscow-119234, Russia. Department of Pharmaceutical and Toxicological Chemistry, Peoples Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya St, Moscow-117198, Russia https://orcid.org/0009-0008-6772-1298
  • GLEB V. PETROV Department of Pharmaceutical and Toxicological Chemistry, Peoples Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya St, Moscow-117198, Russia https://orcid.org/0009-0004-1123-7393
  • ALEXANDER Y. SKRIPNIKOV Department of Biology, Lomonosov Moscow State University, Moscow-119234, Russia
  • ANTON V. SYROESHKIN Department of Pharmaceutical and Toxicological Chemistry, Peoples Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya St, Moscow-117198, Russia

DOI:

https://doi.org/10.22159/ijap.2025v17i5.54386

Keywords:

Peptides, Aqueous solutions, Quality control of peptide agents, DLS, Diffuse reflection, Radiothermal emission, Peptides drugs, CPP

Abstract

Objective: The purpose of our study is to search for a new express method for quality control of peptides and polypeptides based on their authenticity.

Methods: Aqueous solutions of animal and plant-derived regulatory peptides, experimental compounds and finished therapeutics, finished dosage forms of animal tissue extracts (a mixture of peptides and polypeptides from tissues) and drugs with active pharmaceutical ingredient in which solutions of anti-bodies to interferon γ were applied on a carrier in the fluidized bed chamber have been studied by methods such as: dynamic light scattering (DLS) for determining the size distribution of density heterogeneities, method of two-dimensional dynamic light scattering (2D-DLS) and method for determining radiothermal emission using a broadband radiometer to specific identification of peptides and polypeptides drugs without opening the packaging due to the individual data set of each biomolecule. Method of solid phase peptide synthesis based on the FMOC technology

Results: The data obtained indicate that biologically active peptides and polypeptides can induce heterogeneous densities within the submicron (100–1000 nm) and micron (5,000–6,000 nm) ranges. These specific induction patterns were used as individual characteristics of each peptide or active pharmaceutical agent. These were detected using the two-dimensional dynamic light scattering (2D-DLS) method. For example, peptides derived from the same plant (StSys1) and (StPep1) can be easily distinguished at nanomolar concentrations. This approach demonstrates the creation of a unique “fingerprint” for each peptide preparation.

In addition, it has been found that solutions containing peptides, which are biologically active nanoparticles with complex shapes, not only emit within the millimeter wavelength range but can also mimic their presence within cells by activating giant clusters.

Conclusion: The interaction of peptides and polypeptides with aqueous solutions leads to remote anomalous induction of water clusters. The spectrum of sizes of these giant heterophase water clusters, the kinetics of their flickering, and millimeter-wavelength radio emission open up the possibility of express control of peptide-based drugs by their "authenticity" characteristic without opening the packaging.

References

1. Serebrenik YV, Mani D, Maujean T, Burslem GM, Shalem O. Pooled endogenous protein tagging and recruitment for systematic profiling of protein function. Cell Genomics. 2024;4(10):100651. doi: 10.1016/j.xgen.2024.100651, PMID 39255790.

2. Toldra F, Reig M, Aristoy MC, Mora L. Generation of bioactive peptides during food processing. Food Chem. 2018 Nov 30;267:395-404. doi: 10.1016/j.foodchem.2017.06.119, PMID 29934183.

3. Merz ML, Habeshian S, Li B, David JG, Nielsen AL, Ji X. De novo development of small cyclic peptides that are orally bioavailable. Nat Chem Biol. 2024;20(5):624-33. doi: 10.1038/s41589-023-01496-y, PMID 38155304.

4. Yarandi SS, Hebbar G, Sauer CG, Cole CR, Ziegler TR. Diverse roles of leptin in the gastrointestinal tract: modulation of motility absorption growth and inflammation. Nutrition. 2011;27(3):269-75. doi: 10.1016/j.nut.2010.07.004, PMID 20947298.

5. Karelin AA, Blishchenko EY, Ivanov VT. A novel system of peptidergic regulation. FEBS Lett. 1998;428(1-2):7-12. doi: 10.1016/S0014-5793(98)00486-4, PMID 9645464.

6. Boldyrev AA, Aldini G, Derave W. Physiology and pathophysiology of carnosine. Physiol Rev. 2013;93(4):1803-45. doi: 10.1152/physrev.00039.2012, PMID 24137022.

7. Smith NK, Hackett TA, Galli A, Flynn CR. GLP-1: molecular mechanisms and outcomes of a complex signaling system. Neurochem Int. 2019 Sep;128:94-105. doi: 10.1016/j.neuint.2019.04.010, PMID 31002893.

8. Kamm K. CGRP: from neuropeptide to the therapeutic target (background and pathophysiology). Fortschr Neurol Psychiatr. 2024;92(7-8):267-76. doi: 10.1055/a-2331-0783, PMID 39025056.

9. Li T, Li T, Wang Z, Jin Y. Cyclopeptide-based anti-liver cancer agents: a mini-review. Protein Pept Lett. 2023;30(3):201-13. doi: 10.2174/0929866530666230217160717, PMID 36799423.

10. Angata K, Wagatsuma T, Togayachi A, Sato T, Sogabe M, Tajiri K. O-glycosylated HBsAg peptide can induce specific antibody neutralizing HBV infection. Biochim Biophys Acta Gen Subj. 2022;1866(1):130020. doi: 10.1016/j.bbagen.2021.130020, PMID 34582939.

11. Kiss L, Mandity IM, Fulop F. Highly functionalized cyclic β-amino acid moieties as promising scaffolds in peptide research and drug design. Amino Acids. 2017;49(9):1441-55. doi: 10.1007/s00726-017-2439-9, PMID 28634827.

12. Lander AJ, Jin Y, Luk LY. D-peptide and D-protein technology: recent advances, challenges and opportunities. ChemBioChem. 2023;24(4):e202200537. doi: 10.1002/cbic.202200537, PMID 36278392.

13. Gomazkov OA. Cortexin. Molecular mechanisms and targets of neuroprotective activity. Zh Nevrol Psikhiatr Im SS Korsakova. 2015;115(8):99-104. doi: 10.17116/jnevro20151158199-104, PMID 26356623.

14. Kaufmann C, Sauter M. Sulfated plant peptide hormones. J Exp Bot. 2019;70(16):4267-77. doi: 10.1093/jxb/erz292, PMID 31231771.

15. Yi HY, Chowdhury M, Huang YD, Yu XQ. Insect antimicrobial peptides and their applications. Appl Microbiol Biotechnol. 2014;98(13):5807-22. doi: 10.1007/s00253-014-5792-6, PMID 24811407.

16. Suchi SA, Nam KB, Kim YK, Tarek H, Yoo JC. A novel antimicrobial peptide YS12 isolated from Bacillus velezensis CBSYS12 exerts anti-biofilm properties against drug-resistant bacteria. Bioprocess Biosyst Eng. 2023;46(6):813-28. doi: 10.1007/s00449-023-02864-7, PMID 36997801.

17. Ziganshina LE, Abakumova T, Nurkhametova D, Ivanchenko K. Cerebrolysin for acute ischaemic stroke. Cochrane Database Syst Rev. 2023;10(10):CD007026. doi: 10.1002/14651858.CD007026.pub7, PMID 37818733.

18. Boparai JK, Sharma PK. Mini review on antimicrobial peptides sources, mechanism and recent applications. Protein Pept Lett. 2020;27(1):4-16. doi: 10.2174/0929866526666190822165812, PMID 31438824.

19. Qiao Y, Xu B. Peptide assemblies for cancer therapy. ChemMedChem. 2023;18(17):e202300258. doi: 10.1002/cmdc.202300258, PMID 37380607.

20. Ito Y, Nakanomyo I, Motose H, Iwamoto K, Sawa S, Dohmae N. Dodeca CLE peptides as suppressors of plant stem cell differentiation. Science. 2006;313(5788):842-5. doi: 10.1126/science.1128436, PMID 16902140.

21. Syroeshkin AV, Petrov GV, Taranov VV, Pleteneva TV, Koldina AM, Gaydashev IA. Radiothermal emission of nanoparticles with a complex shape as a tool for the quality control of pharmaceuticals containing biologically active nanoparticles. Pharmaceutics. 2023;15(3):966. doi: 10.3390/pharmaceutics15030966, PMID 36986826.

22. Dangi P, Op J. Green synthesis, characterization and in vitro antimicrobial efficacy of silver nanoparticles synthesized from Tectona Grandis wood flour. Asian J Pharm Clin Res. 2019;12(1):257. doi: 10.22159/ajpcr.2019.v12i1.28849.

23. Gokul M, GU, Esakki A. Green synthesis and characterization of isolated flavonoid mediated copper nanoparticles by using Thespesia populnea leaf extract and its evaluation of anti-oxidant and anti-cancer activity. Int J Chem Res. 2022;6(1):15-32. doi: 10.22159/ijcr.2022v6i1.197.

24. Petrov GV, Gaidashev IA, Syroeshkin AV. Physical and chemical characteristics of aqueous colloidal infusions of medicinal plants containing humic acids. Int J Appl Pharm. 2024;16(1):76-82. doi: 10.22159/ijap.2024v16i1.49339.

25. Koldina AM, Uspenskaya EV, Borodin AA, Pleteneva TV, Syroeshkin AV. Light scattering in research and quality control of deuterium-depleted water for pharmaceutical application. Int J Appl Pharm. 2019;11(5):271-8. doi: 10.22159/ijap.2019v11i5.34672.

26. Thagun C, Motoda Y, Kigawa T, Kodama Y, Numata K. Simultaneous introduction of multiple biomacromolecules into plant cells using a cell penetrating peptide nanocarrier. Nanoscale. 2020;12(36):18844-56. doi: 10.1039/D0NR04718J, PMID 32896843.

27. Skripnikov A. Bioassays for identifying and characterizing plant regulatory peptides. Biomolecules. 2023;13(12):1795. doi: 10.3390/biom13121795, PMID 38136666.

28. Uspenskaya EV, Pleteneva TV, Syroeshkin AV, Tarabrina IV. Preparation, characterization and studies of physicochemical and biological properties of drugs coating lactose in fluidized beds. Int J Appl Pharm. 2020;12(5):272-8. doi: 10.22159/ijap.2020v12i5.38281.

29. Morozova MA, Koldina AM, Maksimova TV, Marukhlenko AV, Zlatsky IA, Syroeshkin AV. Slow quasikinetic changes in water lactose complexes during storage. Int J Appl Pharm. 2021;13(1):227-32. doi: 10.22159/ijap.2021v13i1.39837.

30. Goncharuk VV, Lapshin VB, Burdeinaya TN, Pleteneva TV, Chernopyatko AS, Atamanenko ID. Physicochemical properties and biological activity of the water depleted of heavy isotopes. J Water Chem Technol. 2011;33(1):8-13. doi: 10.3103/S1063455X11010024.

31. Goncharuk VV, Syroeshkin AV, Pleteneva TV, Uspenskaya EV, Levitskaya OV, Tverdislov VA. On the possibility of chiral structure density submillimeter inhomogeneities existing in water. J Water Chem Technol. 2017;39(6):319-24. doi: 10.3103/S1063455X17060029.

32. Yurchenko SO, Shkirin AV, Ninham BW, Sychev AA, Babenko VA, Penkov NV. Ion-specific and thermal effects in the stabilization of the gas nanobubble phase in bulk aqueous electrolyte solutions. Langmuir. 2016;32(43):11245-55. doi: 10.1021/acs.langmuir.6b01644, PMID 27350310.

33. Bunkin NF, Shkirin AV, Suyazov NV, Babenko VA, Sychev AA, Penkov NV. Formation and dynamics of ion-stabilized gas nanobubble phase in the bulk of aqueous NaCl solutions. J Phys Chem B. 2016;120(7):1291-303. doi: 10.1021/acs.jpcb.5b11103, PMID 26849451.

34. Syroeshkin AV, Uspenskaya EV, Levitskaya OV, Kuzmina ES, Kazimova IV, Quynh HT. New approaches to determining the D/H ratio in aqueous media based on diffuse laser light scattering for promising application in deuterium-depleted water analysis in antitumor therapy. Sci Pharm. 2024;92(4):63. doi: 10.3390/scipharm92040063.

35. Petrov GV, Galkina DA, Koldina AM, Grebennikova TV, Eliseeva OV, Chernoryzh YYU. Controlling the quality of nanodrugs according to their new property, radiothermal emission. Pharmaceutics. 2024;16(2):180. doi: 10.3390/pharmaceutics16020180, PMID 38399241.

36. Kim DJ, Jo ES, Cho YK, Hur J, Kim CK, Kim CH. A frequency reconfigurable dipole antenna with solid-state plasma in silicon. Sci Rep. 2018;8(1):14996. doi: 10.1038/s41598-018-33278-1, PMID 30301910.

37. Meng X, Guo J, Peng J, Chen J, Wang Z, Shi JR. Direct visualization of concerted proton tunnelling in a water nanocluster. Nature Phys. 2015;11(3):235-9. doi: 10.1038/nphys3225.

38. Petrov GV, Koldina AM, Ledenev OV, Tumasov VN, Nazarov AA, Syroeshkin AV. Nanoparticles and nanomaterials: a review from the standpoint of pharmacy and medicine. Pharmaceutics. 2025;17(5):655. doi: 10.3390/pharmaceutics17050655, PMID 40430945.

39. Stepanov GO, Penkov NV, Rodionova NN, Petrova AO, Kozachenko AE, Kovalchuk AL. The heterogeneity of aqueous solutions: the current situation in the context of experiment and theory. Front Chem. 2024;12:1456533. doi: 10.3389/fchem.2024.1456533, PMID 39391834.

40. Epstein O. The supramolecular matrix concept. Symmetry. 2023;15(10):1914. doi: 10.3390/sym15101914.

Published

07-09-2025

How to Cite

LEDENEV, O. V., PETROV, G. V., SKRIPNIKOV, A. Y., & SYROESHKIN, A. V. (2025). DEVELOPMENT OF A METHOD FOR QUALITY CONTROL OF PEPTIDE DRUGS WITHOUT OPENING THE PRIMARY PACKAGING. International Journal of Applied Pharmaceutics, 17(5), 132–138. https://doi.org/10.22159/ijap.2025v17i5.54386

Issue

Section

Original Article(s)

Similar Articles

<< < 133 134 135 136 137 > >> 

You may also start an advanced similarity search for this article.