ARTIFICIAL INTELLIGENCE POWERED DESIGN OF EXPERIMENTS: OPTIMIZING ABIRATERONE ACETATE LOADED GELATIN NANOPARTICLES FOR ENHANCED ORAL BIOAVAILABILITY OF ABIRATERONE ACETATE

Authors

  • NALLAMUTHU M. Department of Pharmaceutics, School of Pharmaceutical Sciences, Vels Institute of Science, Technology and Advanced Studies (VISTAS), Pallavaram, Chennai-600117, Tamil Nadu, India https://orcid.org/0009-0002-5003-720X
  • UMADEVI S. Department of Pharmaceutics, School of Pharmaceutical Sciences, Vels Institute of Science, Technology and Advanced Studies (VISTAS), Pallavaram, Chennai-600117, Tamil Nadu, India https://orcid.org/0000-0003-0242-2461
  • ANANDAN R. Department of Computer Science and Engineering, Vels Institute of Science, Technology and Advanced Studies (VISTAS), Pallavaram, Chennai-600117, Tamil Nadu, India https://orcid.org/0000-0001-5461-1040

DOI:

https://doi.org/10.22159/ijap.2025v17i4.54437

Keywords:

Abiraterone acetate, Design of experiments, Gelatin nanoparticles, Artificial neural networks, Validation, Formulation optimization, Oral bioavailability

Abstract

Objective: The current probing aims to investigate the Artificial Intelligence (AI) powered Design of Experiments (DoE) to optimize Abiraterone acetate loaded Gelatin Nanoparticles (AGNPs) with the desired Critical Quality Attributes (CQA) for increasing oral bioavailability of abiraterone acetate.

Methods: AGNPs were formulated using the desolvation method, guided by a quality-by-design (QbD) approach, to identify CQA. The proposed DoE was a Central Composite Design (CCD) that was done to determine the influence of gelatin, tween 80, and genipin on particle size and Drug Entrapment Efficiency (DEE). Further optimization was performed with Artificial Neural Networks (ANN) to refine the predictive models.

Results: The ANN model was developed using data from the CCD. K-fold cross-validation was implemented for training and validating the model. Both training and validation sets' R-squared values were closer to 1, confirming that the algorithms correctly characterized the predictive models. Characterization studies confirmed that optimized AGNPs had particle size (123.4±0.06 nm), poly dispersibility index (0.047±0.07), DEE (88.23±0.26 %), zeta potential (+35.78±0.24 mV), and controlled drug release (96.32±0.78 % over 12 h).

Conclusion: The results show that nanoparticles developed according to the criteria set by CQA to enhance oral bioavailability, and an AI-integrated CCD approach optimally worked for AGNPs, which can deliver abiraterone acetate orally. The infusion of advanced technologies ANN undoubtedly holds excellent potential for exciting discoveries in nanomedicine and enables future innovations.

References

Butler EN, Kelly SP, Coupland VH, Rosenberg PS, Cook MB. Fatal prostate cancer incidence trends in the United States and England by race stage and treatment. Br J Cancer. 2020;123(3):487-94. doi: 10.1038/s41416-020-0859-x, PMID 32433602.

Fizazi K, Tran N, Fein L, Matsubara N, Rodriguez Antolin A, Alekseev BY. Abiraterone plus prednisone in metastatic castration sensitive prostate cancer. N Engl J Med. 2017;377(4):352-60. doi: 10.1056/NEJMoa1704174, PMID 28578607.

Attard G, Reid AH, A Hern RA, Parker C, Oommen NB, Folkerd E. Selective inhibition of CYP17 with abiraterone acetate is highly active in the treatment of castration resistant prostate cancer. J Clin Oncol. 2009;27(23):3742-8. doi: 10.1200/JCO.2008.20.0642, PMID 19470933.

Goldberg T, Berrios Colon E. Abiraterone (zytiga) a novel agent for the management of castration resistant prostate cancer. PT. 2013;38(1):23-6. PMID 23599666.

Schultz HB, Meola TR, Thomas N, Prestidge CA. Oral formulation strategies to improve the bioavailability and mitigate the food effect of abiraterone acetate. Int J Pharm. 2020 Mar 15;577:119069. doi: 10.1016/j.ijpharm.2020.119069, PMID 31981706.

Imam SS. Nanoparticles: the future of drug delivery. Int J Curr Pharm Sci. 2023;15(6):8-15. doi: 10.22159/ijcpr.2023v15i6.3076.

Zielinska A, Carreiro F, Oliveira AM, Neves A, Pires B, Venkatesh DN. Polymeric nanoparticles: production characterization toxicology and ecotoxicology. Molecules. 2020;25(16):3731. doi: 10.3390/molecules25163731, PMID 32824172.

Jiang X, Du Z, Zhang X, Zaman F, Song Z, Guan Y. Gelatin-based anticancer drug delivery nanosystems: a mini review. Front Bioeng Biotechnol. 2023 Mar 21;11:1158749. doi: 10.3389/fbioe.2023.1158749, PMID 37025360.

Makadia HK, Siegel SJ. Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier. Polymers (Basel). 2011;3(3):1377-97. doi: 10.3390/polym3031377, PMID 22577513.

Kean T, Thanou M. Biodegradation, biodistribution and toxicity of chitosan. Adv Drug Deliv Rev. 2010 Jan 31;62(1):3-11. doi: 10.1016/j.addr.2009.09.004, PMID 19800377.

Richfield O, Piotrowski Daspit AS, Shin K, Saltzman WM. Rational nanoparticle design: optimization using insights from experiments and mathematical models. J Control Release. 2023 Aug;360:772-83. doi: 10.1016/j.jconrel.2023.07.018, PMID 37442201.

Rampado R, Peer D. Design of experiments in the optimization of nanoparticle-based drug delivery systems. J Control Release. 2023;358:398-419. doi: 10.1016/j.jconrel.2023.05.001, PMID 37164240.

Podder S, Mukherjee S. Response surface methodology (RSM) as a tool in pharmaceutical formulation development. Asian J Pharm Clin Res. 2024;17(11):18-25. doi: 10.22159/ajpcr.2024v17i11.52149.

Singh B, Bhatowa R, Tripathi CB, Kapil R. Developing micro-/nanoparticulate drug delivery systems using design of experiments. Int J Pharm Investig. 2011;1(2):75-87. doi: 10.4103/2230-973X.82395, PMID 23071925.

Tavares Luiz M, Santos Rosa Viegas J, Palma Abriata J, Viegas F, Testa Moura De Carvalho Vicentini F, Lopes Badra Bentley MV. Design of experiments (DoE) to develop and to optimize nanoparticles as drug delivery systems. Eur J Pharm Biopharm. 2021 Aug;165:127-48. doi: 10.1016/j.ejpb.2021.05.011, PMID 33992754.

Das KP, JC. Nanoparticles and convergence of artificial intelligence for targeted drug delivery for cancer therapy: current progress and challenges. Front Med Technol. 2022;4:1067144. doi: 10.3389/fmedt.2022.1067144, PMID 36688144.

Vidhya KS, Sultana A, M NK, Rangareddy H. Artificial intelligence's impact on drug discovery and development from bench to bedside. Cureus. 2023;15(10):e47486. doi: 10.7759/cureus.47486, PMID 37881323.

Vora LK, Gholap AD, Jetha K, Thakur RR, Solanki HK, Chavda VP. Artificial intelligence in pharmaceutical technology and drug delivery design. Pharmaceutics. 2023;15(7):1916. doi: 10.3390/pharmaceutics15071916, PMID 37514102.

Paul D, Sanap G, Shenoy S, Kalyane D, Kalia K, Tekade RK. Artificial intelligence in drug discovery and development. Drug Discov Today. 2021;26(1):80-93. doi: 10.1016/j.drudis.2020.10.010, PMID 33099022.

Wang S, Di J, Wang D, Dai X, Hua Y, Gao X. State-of-the art review of artificial neural networks to predict characterize and optimize pharmaceutical formulation. Pharmaceutics. 2022;14(1):183. doi: 10.3390/pharmaceutics14010183, PMID 35057076.

Aksu B, Paradkar A, De Matas M, Ozer O, Guneri T, York P. Quality by design approach: application of artificial intelligence techniques of tablets manufactured by direct compression. AAPS PharmSciTech. 2012;13(4):1138-46. doi: 10.1208/s12249-012-9836-x, PMID 22956056.

Suriyaamporn P, Pamornpathomkul B, Wongprayoon P, Rojanarata T, Ngawhirunpat T, Opanasopit P. The artificial intelligence and design of experiment assisted in the development of progesterone loaded solid lipid nanoparticles for transdermal drug delivery. Pharmacia. 2024;71:1-12. doi: 10.3897/pharmacia.71.e123549.

Arboretti R, Ceccato R, Pegoraro L, Salmaso L, Housmekerides C, Spadoni L. Machine learning and design of experiments with an application to product innovation in the chemical industry. J Appl Stat. 2022;49(10):2674-99. doi: 10.1080/02664763.2021.1907840, PMID 35757041.

Yu LX, Amidon G, Khan MA, Hoag SW, Polli J, Raju GK. Understanding pharmaceutical quality by design. AAPS J. 2014;16(4):771-83. doi: 10.1208/s12248-014-9598-3, PMID 24854893.

Zhang L, Mao S. Application of quality by design in the current drug development. Asian J Pharm Sci. 2017 Jan;12(1):1-8. doi: 10.1016/j.ajps.2016.07.006, PMID 32104308.

N Politis S, Colombo P, Colombo G, M Rekkas D. Design of experiments (DoE) in pharmaceutical development. Drug Dev Ind Pharm. 2017;43(6):889-901. doi: 10.1080/03639045.2017.1291672, PMID 28166428.

Sipos B, Katona G, Csoka I. A systematic knowledge space-based proposal on quality by design-driven polymeric micelle development. Pharmaceutics. 2021;13(5):702. doi: 10.3390/pharmaceutics13050702, PMID 34065825.

Pielenhofer J, Meiser SL, Gogoll K, Ciciliani AM, Denny M, Klak M. Quality by design (QbD) approach for a nanoparticulate imiquimod formulation as an investigational medicinal product. Pharmaceutics. 2023;15(2):514. doi: 10.3390/pharmaceutics15020514, PMID 36839835.

Krishnamoorthy K, Mahalingam M. Selection of a suitable method for the preparation of polymeric nanoparticles: multi-criteria decision making approach. Adv Pharm Bull. 2015;5(1):57-67. doi: 10.5681/apb.2015.008, PMID 25789220.

Geh KJ, Hubert M, Winter G. Optimisation of one-step desolvation and scale-up of gelatine nanoparticle production. J Microencapsul. 2016;33(7):595-604. doi: 10.1080/02652048.2016.1228706, PMID 27556342.

Silveira RF, Lima AL, Gross IP, Gelfuso GM, Gratieri T, Cunha Filho M. The role of artificial intelligence and data science in nanoparticles development: a review. Nanomedicine (Lond). 2024;19(14):1271-83. doi: 10.1080/17435889.2024.2359355, PMID 38905147.

Ismail R, Sovany T, Gacsi A, Ambrus R, Katona G, Imre N. Synthesis and statistical optimization of poly (lactic-Co-glycolic acid) nanoparticles encapsulating GLP1 analog designed for oral delivery. Pharm Res. 2019;36(7):99. doi: 10.1007/s11095-019-2620-9, PMID 31087188.

Salatin S, Barar J, Barzegar Jalali M, Adibkia K, Kiafar F, Jelvehgari M. Development of a nanoprecipitation method for the entrapment of a very water soluble drug into Eudragit RL nanoparticles. Res Pharm Sci. 2017;12(1):1-14. doi: 10.4103/1735-5362.199041, PMID 28255308.

Bai G, Armenante PM, Plank RV, Gentzler M, Ford K, Harmon P. Hydrodynamic investigation of USP dissolution test apparatus II. J Pharm Sci. 2007;96(9):2327-49. doi: 10.1002/jps.20818, PMID 17573698.

Gonzalez Gonzalez O, Ramirez IO, Ramirez BI, O Connell P, Ballesteros MP, Torrado JJ. Drug stability: ICH versus accelerated predictive stability studies. Pharmaceutics. 2022;14(11):2324. doi: 10.3390/pharmaceutics14112324, PMID 36365143.

Liu TY, Lin YL. Novel pH-sensitive chitosan based hydrogel for encapsulating poorly water soluble drugs. Acta Biomater. 2010;6(4):1423-9. doi: 10.1016/j.actbio.2009.10.010, PMID 19819354.

Subhan MA, Yalamarty SS, Filipczak N, Parveen F, Torchilin VP. Recent advances in tumor targeting via EPR effect for cancer treatment. J Pers Med. 2021;11(6):571. doi: 10.3390/jpm11060571, PMID 34207137.

Chang SH, Lin HT, Wu GJ, Tsai GJ. pH Effects on solubility zeta potential and correlation between Antibacterial Activity and Molecular Weight of chitosan. Carbohydr Polym. 2015;134:74-81. doi: 10.1016/j.carbpol.2015.07.072, PMID 26428102.

Singh R, Lillard JW. Nanoparticle-based targeted drug delivery. Exp Mol Pathol. 2009;86(3):215-23. doi: 10.1016/j.yexmp.2008.12.004, PMID 19186176.

Kita K, Dittrich C. Drug delivery vehicles with improved encapsulation efficiency: taking advantage of specific drug carrier interactions. Expert Opin Drug Deliv. 2011;8(3):329-42. doi: 10.1517/17425247.2011.553216, PMID 21323506.

Wheatley AM, Kaduk JA, Gindhart AM, Blanton TN. Crystal structure of abiraterone acetate (Zytiga), C26H33NO2. Powder Diffr. 2018;33(1):72. doi: 10.1017/S0885715618000015.

Blagden N, De Matas M, Gavan PT, York P. Crystal engineering of active pharmaceutical ingredients to improve solubility and dissolution rates. Adv Drug Deliv Rev. 2007;59(7):617-30. doi: 10.1016/j.addr.2007.05.011, PMID 17597252.

Shilpi D, Kushwah V, Agrawal AK, Jain S. Improved stability and enhanced oral bioavailability of atorvastatin loaded stearic acid modified gelatin nanoparticles. Pharm Res. 2017;34(7):1505-16. doi: 10.1007/s11095-017-2173-8, PMID 28466393.

Choi MJ, Woo MR, Choi HG, Jin SG. Effects of polymers on the drug solubility and dissolution enhancement of poorly water soluble rivaroxaban. Int J Mol Sci. 2022;23(16):9491. doi: 10.3390/ijms23169491, PMID 36012748.

Al Kassas R, Bansal M, Shaw J. Nanosizing techniques for improving bioavailability of drugs. J Control Release. 2017 Aug 28;260:202-12. doi: 10.1016/j.jconrel.2017.06.003, PMID 28603030.

Ali MS, Alam MS, Alam N, Anwer T, Safhi MM. Accelerated stability testing of a clobetasol propionate loaded nanoemulsion as per ICH guidelines. Sci Pharm. 2013;81(4):1089-100. doi: 10.3797/scipharm.1210-02, PMID 24482775.

Published

07-07-2025

How to Cite

M., N., S., U., & R., A. (2025). ARTIFICIAL INTELLIGENCE POWERED DESIGN OF EXPERIMENTS: OPTIMIZING ABIRATERONE ACETATE LOADED GELATIN NANOPARTICLES FOR ENHANCED ORAL BIOAVAILABILITY OF ABIRATERONE ACETATE. International Journal of Applied Pharmaceutics, 17(4), 483–496. https://doi.org/10.22159/ijap.2025v17i4.54437

Issue

Section

Original Article(s)

Similar Articles

<< < 7 8 9 10 11 > >> 

You may also start an advanced similarity search for this article.