IN SILICO DESIGN AND IDENTIFICATION OF POTENTIAL D-ALA: D-ALA LIGASE INHIBITORS AGAINST STAPHYLOCOCCUS AUREUS

Authors

  • ABISHA THOMAS Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, Nilgiris, Tamil Nadu, India https://orcid.org/0009-0007-9071-1699
  • MD. AFZAL AZAM Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, Nilgiris, Tamil Nadu, India

DOI:

https://doi.org/10.22159/ijap.2025v17i4.54510

Keywords:

SADDL, Molecular docking, MM-GBSA, MD simulation, Glide score, RMSD, antibacterial agent, Staphylococcus aureus, Protein–ligand interaction, Mg²⁺ coordination

Abstract

Objective: This study aimed to identify potent inhibitors of Staphylococcus aureus D-alanine: D-alanine ligase (SADDL), a key enzyme in bacterial cell wall synthesis, by designing and evaluating a series of hydrazine carbothioamide derivatives. These scaffolds were selected due to their previously reported antimicrobial activity and potential for structural optimization.

Methods: Nine novel hydrazine carbothioamide derivatives were rationally designed and computationally assessed using an integrated in silico workflow. Molecular docking was performed against the SADDL active site (PDB ID: 2I80) using the Glide module to estimate binding affinity through Glide score, Extra-precision Hydrogen-bonding (XP H-bonding), van der Waals, Coulombic energy, and E-model scores. Binding free energies (ΔG_bind) were calculated using Molecular Mechanics-General Born Surface Area (MM-GBSA) to refine the ranking. To validate stability, a 100 ns Molecular Dynamics (MD) simulation using Desmond was conducted for the top-ranked compound, with Root mean Square Deviation (RMSD), Root mean Square Fluctuation (RMSF), and protein–ligand interaction analysis.

Results: Compound 1 demonstrated the best binding affinity with a Glide score of-11.11 kcal/mol and ΔG_bind of-96.06 kcal/mol, outperforming the co-crystallized ligand (-9.88 kcal/mol and- 59.98 kcal/mol). It exhibited strong van der Waals (-27.87kcal/mol) and Coulombic (-207.11kcal/mol) energies, as well as significant XP H-bonding (-3.25kcal/mol). Compound 6 and 8 also showed favorable interactions. MD simulations confirmed the stable binding of Compound 1 up to 60 ns, with consistent RMSD and low RMSF. Key residues involved included Ser150, Ser151, Glu187, and Lys215. Coordination with Mg²⁺ via Glu270, Asp257, and Ser150 further enhanced binding stability.

Conclusion: Compound 1 emerged as a promising SADDL inhibitor with strong and stable binding, suggesting its potential as a lead antibacterial agent. Further in vitro and in vivo studies are warranted.

References

Silver LL. Multi-targeting by monotherapeutic antibacterials. Nat Rev Drug Discov. 2007;6(1):41-55. doi: 10.1038/nrd2202, PMID 17159922.

Boucher HW, Talbot GH, Bradley JS, Edwards JE, Gilbert D, Rice LB. Bad bugs no drugs: no ESKAPE! an update from the infectious diseases society of America. Clin Infect Dis. 2009;48(1):1-12. doi: 10.1086/595011, PMID 19035777.

Wong KK, Pompliano DL. Peptidoglycan biosynthesis. Unexploited antibacterial targets within a familiar pathway. Adv Exp Med Biol. 1998;456:197-217. doi: 10.1007/978-1-4615-4897-3_11, PMID 10549370.

Prosser GA, De Carvalho LP. Kinetic mechanism and inhibition of mycobacterium tuberculosis D-alanine:D-alanine ligase by the antibiotic D-cycloserine. FEBS Journal. 2013;280(4):1150-66. doi: 10.1111/febs.12108, PMID 23286234.

Hrast M, Vehar B, Turk S, Konc J, Gobec S, Janezic D. Function of the D-alanine:D-alanine ligase lid loop: a molecular modeling and bioactivity study. J Med Chem. 2012;55(15):6849-56. doi: 10.1021/jm3006965, PMID 22803830.

Zawadzke LE, Bugg TD, Walsh CT. Existence of two D-alanine: D-alanine ligases in escherichia coli: cloning and sequencing of the ddlA gene and purification and characterization of the DdlA and DdlB enzymes. Biochemistry. 1991;30(6):1673-82. doi: 10.1021/bi00220a033, PMID 1993184.

Tytgat I, Colacino E, Tulkens PM, Poupaert JH, Prevost M, Van Bambeke F. DD-ligases as a potential target for antibiotics: past present and future. Curr Med Chem. 2009;16(20):2566-80. doi: 10.2174/092986709788682029, PMID 19601798.

Wright GD, Walsh CT. D-alanyl-D-alanine ligases and the molecular mechanism of vancomycin resistance. Acc Chem Res. 1992;25(10):468-73. doi: 10.1021/ar00022a006.

Arthur M, Reynolds P, Courvalin P. Glycopeptide resistance in enterococci. Trends Microbiol. 1996;4(10):401-7. doi: 10.1016/0966-842X(96)10063-9, PMID 8899966.

Fan C, Park IS, Walsh CT, Knox JR. D-alanine:D-alanine ligase: phosphonate and phosphinate intermediates with wild type and the Y216F mutant. Biochemistry. 1997;36(9):2531-8. doi: 10.1021/bi962431t, PMID 9054558.

Liu S, Chang JS, Herberg JT, Horng MM, Tomich PK, Lin AH. Allosteric inhibition of staphylococcus aureus D-alanine:D-alanine ligase revealed by crystallographic studies. Proc Natl Acad Sci USA. 2006;103(41):15178-83. doi: 10.1073/pnas.0604905103, PMID 17015835, PMCID PMC1622796.

Duncan K, Walsh CT. ATP-dependent inactivation and slow binding inhibition of salmonella typhimurium D-alanine: D-alanine ligase (ADP) by (aminoalkyl)phosphinate and aminophosphonate analogues of D-alanine. Biochemistry. 1988;27(10):3709-14. doi: 10.1021/bi00410a028, PMID 3044448.

Knox JR, Moews PC, Fan C. Complex of D-ala: D-ala ligase with ADP and a phosphoryl phosphonate. Biochemistry. 1997;36:2531. doi: 10.2210/pdb1IOV/pdb.

Putty S, Rai A, Jamindar D, Pagano P, Quinn CL, Mima T. Characterization of d-boroAla as a novel broad spectrum antibacterial agent targeting d-Ala-d-Ala ligase. Chem Biol Drug Des. 2011;78(5):757-63. doi: 10.1111/j.1747-0285.2011.01210.x, PMID 21827632.

Prosser GA, De Carvalho LP. Reinterpreting the mechanism of inhibition of mycobacterium tuberculosis D-alanine:D-alanine ligase by D-cycloserine. Biochemistry. 2013;52(40):7145-9. doi: 10.1021/bi400839f, PMID 24033232.

Lu Y, Xu H, Zhao X. Crystal structure of the Apo form of D-alanine:D-alanine ligase (DDl) from streptococcus mutans. Protein Pept Lett. 2010;17(8):1053-7. doi: 10.2174/092986610791498858, PMID 20522004.

Batson S, Majce V, Lloyd AJ, Rea D, Fishwick CW, Simmons KJ. The X-ray crystal structure of D-alanyl-D-alanine ligase in complex with ATP and D-ala-D-ala. Nat. Commun. 2017;8:1939.

Fan C, Park IS, Walsh CT, Knox JR. D-alanine: D-alanine ligase: phosphonate and phosphinate intermediates with wild type and the Y216F mutant. Biochemistry. 1997;36(9):2531-8. doi: 10.1021/bi962431t, PMID 9054558.

Fan C, Moews PC, Walsh CT, Knox JR. Vancomycin resistance: structure of D-alanine:D-alanine ligase at 2.3 a resolution. Science. 1994;266(5184):439-43. doi: 10.1126/science.7939684, PMID 7939684.

Shi Y, Walsh CT. Active site mapping of escherichia coli d-Ala-d-Ala ligase by structure based mutagenesis. Biochemistry. 1995;34(9):2768-76. doi: 10.1021/bi00009a005, PMID 7893688.

Elassal ES, Fahmy AO, Saad AN, Ali AH, Elshenety AH, Badr OA. Discovery and development of new antibacterial drugs. In: microbial genomics: clinical pharmaceutical and industrial applications. Amsterdam: Elsevier. 2024. p. 333-59. doi: 10.1016/B978-0-443-18866-4.00012-2.

Lee JH, Na Y, Song HE, Kim D, Park BH, Rho SH. Crystal structure of the apo form of D-alanine: D-alanine ligase (DDL) from thermus caldophilus: a basis for the substrate induced conformational changes. Proteins. 2006;64(4):1078-82. doi: 10.1002/prot.20927, PMID 16779845.

Parsons WH, Patchett AA, Bull HG, Schoen WR, Taub D, Davidson J. Phosphinic acid inhibitors of D-alanyl-D-alanine ligase. J Med Chem. 1988;31(9):1772-8. doi: 10.1021/jm00117a017, PMID 3137344.

Chakravarty PK, Greenlee WJ, Parsons WH, Patchett AA, Combs P, Roth A. (3-Amino-2-oxoalkyl)phosphonic acids and their analogues as novel inhibitors of D-alanine:D-alanine ligase. J Med Chem. 1989;32(8):1886-90. doi: 10.1021/jm00128a033, PMID 2502630.

Lacoste A, Chollet Gravey A, Vo Quang L, Vo Quang Y, Le Goffic F. Time-dependent inhibition of streptococcus faecalisd alanine: d-alanine ligase by α-aminophosphonamidic acids. Eur J Med Chem. 1991;26(3):255-60. doi: 10.1016/0223-5234(91)90057-T.

Paymal SB, Barale SS, Supanekar SV, Sonawane KD. Structure based virtual screening molecular dynamic simulation to identify the oxadiazole derivatives as inhibitors of enterococcus D-Ala-D-Ser ligase for combating vancomycin resistance. Comput Biol Med. 2023 Jun 1;159:106965. doi: 10.1016/j.compbiomed.2023.106965, PMID 37119552.

Walker EH, Walker EH, Pacold ME, Perisic O, Stephens L, Hawkins PT, Wymann MP. Structural determinants of phosphoinositide 3-kinase inhibition by wortmannin LY294002, quercetin myricetin and staurosporine. Mol Cell. 2000;6(4):909-19. doi: 10.1016/s1097-2765(05)00089-4, PMID 11090628.

Baqi MA, Jayanthi K, Rajeshkumar R. Molecular docking insights into probiotics sakacin p and sakacin a as potential inhibitors of the cox-2 pathway for colon cancer therapy. Int J App Pharm. 2025;17(1):153-60. doi: 10.22159/ijap.2025v17i1.52476.

Pant K, Karpel RL, Rouzina I, Williams MC. Mechanical measurement of single molecule binding rates: kinetics of DNA helix-destabilization by T4 gene 32 protein. J Mol Biol. 2004;336(4):851-70. doi: 10.1016/j.jmb.2003.12.025, PMID 15095865.

Sherman W, Beard HS, Farid R. Use of an induced fit receptor structure in virtual screening. Chem Biol Drug Des. 2006 Jan;67(1):83-4. doi: 10.1111/j.1747-0285.2005.00327.x, PMID 16492153.

Redhu S, Jindal A. Molecular modelling: a new scaffold for drug design. Int J Pharm Pharm Sci. 2013;5 Suppl 1:5-8.

Shaikh SI, Zaheer Z, Mokale SN, Lokwani DK. Development of new pyrazole hybrids as antitubercular agents: synthesis biological evaluation and molecular docking study. Int J Pharm Pharm Sci. 2017;9(10):50-6. doi: 10.22159/ijpps.2017v9i11.20469.

Friesner RA, Banks JL, Murphy RB, Halgren TA, Klicic JJ, Mainz DT. Glide: a new approach for rapid accurate docking and scoring. 1. Method and assessment of docking accuracy. J Med Chem. 2004 Mar 1;47(7):1739-49. doi: 10.1021/jm0306430, PMID 15027865.

Jayanthi K, Ahmed SS, Baqi MA, Afzal Azam MA. Molecular docking dynamics of selected benzylidene aminophenyl acetamides AsTmk inhibitors using high throughput virtual screening (Htvs). Int J App Pharm. 2024;16(3):290-7. doi: 10.22159/ijap.2024v16i3.50023.

Humphrey W, Dalke A, Schulten K. VMD: visual molecular dynamics. J Mol Graph. 1996 Feb 1;14(1):33-8. doi: 10.1016/0263-7855(96)00018-5, PMID 8744570.

Qin Y, Xu L, Teng Y, Wang Y, Ma P. Discovery of novel antibacterial agents: recent developments in D‐alanyl‐D‐alanine ligase inhibitors. Chem Biol Drug Des. 2021 Sep;98(3):305-22. doi: 10.1111/cbdd.13899, PMID 34047462.

Kovac A, Konc J, Vehar B, Bostock JM, Chopra I, Janezic D. Discovery of new inhibitors of D-alanine: D-alanine ligase by structure based virtual screening. J Med Chem. 2008 Dec 11;51(23):7442-8. doi: 10.1021/jm800726b, PMID 19053785.

Pauza NL, Cotti MP, Godar L, De Sancovich AF, Sancovich HA. Disturbances on delta aminolevulinate dehydratase (ALA-D) enzyme activity by Pb2+ Cd2, Cu2, Mg2, Zn2, Na+, K+and Li+: analysis based on coordination geometry and acid base lewis capacity. J Inorg Biochem. 2005 Feb 1;99(2);409-14. doi: 10.1016/j.jinorgbio.2004.10.013, PMID 15621272.

Published

07-07-2025

How to Cite

THOMAS, A., & AZAM, M. A. (2025). IN SILICO DESIGN AND IDENTIFICATION OF POTENTIAL D-ALA: D-ALA LIGASE INHIBITORS AGAINST STAPHYLOCOCCUS AUREUS. International Journal of Applied Pharmaceutics, 17(4), 401–407. https://doi.org/10.22159/ijap.2025v17i4.54510

Issue

Section

Original Article(s)

Similar Articles

<< < 1 2 3 4 5 > >> 

You may also start an advanced similarity search for this article.