IN VITRO COMPARATIVE EFFECTS OF BIOSIMILAR AND REFERENCE BEVACIZUMAB ON OXIDATIVE STRESS, INFLAMMATION, AND CYTOTOXICITY IN RETINAL PIGMENT EPITHELIAL CELLS

Authors

  • PUSSADEE PAENSUWAN Department of Optometry, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok, Thailand-65000, Asia https://orcid.org/0000-0002-9103-8463
  • ROSSUKON KHOTCHARRAT Department of Ophthalmology, Faculty of Medicine, Naresuan University Hospital, Phitsanulok, Thailand-65000, Asia https://orcid.org/0000-0002-9655-4475
  • WANACHAT THONGSUK Department of Optometry, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok, Thailand-65000, Asia https://orcid.org/0000-0002-4269-3090
  • KANIN LUANGSAWANG Department of Ophthalmology, Faculty of Medicine, Naresuan University Hospital, Phitsanulok, Thailand-65000, Asia https://orcid.org/0000-0002-4777-9424

DOI:

https://doi.org/10.22159/ijap.2025v17i5.54738

Keywords:

Bevacizumab-awwb, Retina, Biosimilar, Inflammation, Oxidative stress

Abstract

Objective: To compare the effects of the bevacizumab biosimilar (bevacizumab-awwb, MVASI®) and reference bevacizumab (Avastin®) on oxidative stress, inflammation, and cytotoxicity in human retinal pigment epithelial (ARPE-19) cells.

Methods: ARPE-19 cells were treated with clinically relevant concentrations of bevacizumab-awwb or reference bevacizumab (0.313 and 0.625 mg/ml) for 24 h. Cell viability was assessed using Alamar blue assay and apoptosis was analyzed by Annexin V-FITC/PI flow cytometry. Intracellular reactive oxygen species (ROS) generation was evaluated by CMH2DCFDA staining and fluorescence quantification. Proinflammatory cytokine secretion (IL-1β, IL-6, TNF-α) was measured using ELISA. Expression of nuclear factor erythroid 2-related factor 2 (Nrf2) and phosphorylation of extracellular signal-regulated kinase 1/2 (Erk1/2) were determined by capillary-based Western blotting.

Results: Both bevacizumab-awwb and reference bevacizumab had no significant effects on cell viability or apoptosis induction relative to untreated controls (P>0.05), indicating preserved membrane integrity and absence of cytotoxicity after 24 h exposure. ROS production and secretion of IL-1β, IL-6, and TNF-α remained unchanged, suggesting no oxidative or inflammatory response. Notably, bevacizumab-awwb treatment upregulated Nrf2 expression and Erk1/2 phosphorylation, indicating activation of antioxidant-related signaling pathways.

Conclusion: These findings indicate that a clinical dose of bevacizumab-awwb, comparable to its reference biologic, does not induce oxidative stress or inflammation in ARPE-19 cells. Furthermore, it may contribute to oxidative stress modulation through increased Nrf2 expression. Collectively, these results support the use of bevacizumab-awwb as a safe, non-toxic alternative for intravitreal therapy in ophthalmic diseases.

References

1. Shu DY, Chaudhary S, Cho KS, Lennikov A, Miller WP, Thorn DC. Role of oxidative stress in ocular diseases: a balancing act. Metabolites. 2023;13(2):187. doi: 10.3390/metabo13020187, PMID 36837806.

2. Chan TC, Wilkinson Berka JL, Deliyanti D, Hunter D, Fung A, Liew G. The role of reactive oxygen species in the pathogenesis and treatment of retinal diseases. Exp Eye Res. 2020;201:108255. doi: 10.1016/j.exer.2020.108255, PMID 32971094.

3. Ung L, Pattamatta U, Carnt N, Wilkinson Berka JL, Liew G, White AJ. Oxidative stress and reactive oxygen species: a review of their role in ocular disease. Clin Sci (Lond). 2017;131(24):2865-83. doi: 10.1042/CS20171246, PMID 29203723.

4. Rossino MG, Lulli M, Amato R, Cammalleri M, Monte MD, Casini G. Oxidative stress induces a VEGF autocrine loop in the retina: relevance for diabetic retinopathy. Cells. 2020;9(6):1452. doi: 10.3390/cells9061452, PMID 32545222.

5. I GJ, Sd I, KK, KP, NS MA. Comparative study of anti-angiogenic activities of medicinal plants and their therapeutic potential in angiogenesis-dependent disorders. Asian J Pharm Clin Res. 2016;9(1):219-22.

6. Ushio Fukai M, Nakamura Y. Reactive oxygen species and angiogenesis: NADPH oxidase as target for cancer therapy. Cancer Lett. 2008;266(1):37-52. doi: 10.1016/j.canlet.2008.02.044, PMID 18406051.

7. Chen R, Lee C, Lin X, Zhao C, Li X. Novel function of VEGF-B as an antioxidant and therapeutic implications. Pharmacol Res. 2019;143:33-9. doi: 10.1016/j.phrs.2019.03.002, PMID 30851357.

8. Khandelwal G, Kumar K, Dubey A, Som V. Evaluation of visual outcome and clinical response of intravitreal anti VEGF agents in various indications. Asian J Pharm Clin Res. 2024;17(1):53-6. doi: 10.22159/ajpcr.2024.v17i1.49123.

9. Hurwitz H, Fehrenbacher L, Novotny W, Cartwright T, Hainsworth J, Heim W. Bevacizumab plus irinotecan fluorouracil and leucovorin for metastatic colorectal cancer. N Engl J Med. 2004;350(23):2335-42. doi: 10.1056/NEJMoa032691, PMID 15175435.

10. Comparison of Age related Macular Degeneration Treatments Trials (CATT) Research Group, Martin DF, Maguire MG, Fine SL, Ying GS, Jaffe GJ. Ranibizumab and bevacizumab for treatment of neovascular age-related macular degeneration: two year results. Ophthalmology. 2012;119(7):1388-98. doi: 10.1016/j.ophtha.2012.03.053, PMID 22555112.

11. Wells JA, Glassman AR, Ayala AR, Jampol LM, Bressler NM, Bressler SB. Aflibercept bevacizumab or ranibizumab for diabetic macular edema: two-year results from a comparative effectiveness randomized clinical trial. Ophthalmology. 2016;123(6):1351-9. doi: 10.1016/j.ophtha.2016.02.022, PMID 26935357.

12. Hykin P, Prevost AT, Vasconcelos JC, Murphy C, Kelly J, Ramu J. Clinical effectiveness of intravitreal therapy with ranibizumab vs aflibercept vs bevacizumab for macular edema secondary to central retinal vein occlusion: a randomized clinical trial. JAMA Ophthalmol. 2019;137(11):1256-64. doi: 10.1001/jamaophthalmol.2019.3305, PMID 31465100.

13. Ranjbar M, Brinkmann MP, Zapf D, Miura Y, Rudolf M, Grisanti S. Fc receptor inhibition reduces susceptibility to oxidative stress in human RPE cells treated with bevacizumab but not aflibercept. Cell Physiol Biochem. 2016;38(2):737-47. doi: 10.1159/000443030, PMID 26871551.

14. Dithmer M, Kirsch AM, Grafenstein L, Wang F, Schmidt H, Coupland SE. Uveal melanoma cell under oxidative stress influence of VEGF and VEGF-inhibitors. Klin Monbl Augenheilkd. 2019;236(3):295-307. doi: 10.1055/s-0043-103002, PMID 28376556.

15. Jiang P, Choi A, Swindle Reilly KE. Controlled release of anti-VEGF by redox-responsive polydopamine nanoparticles. Nanoscale. 2020;12(33):17298-311. doi: 10.1039/D0NR03710A, PMID 32789323.

16. Van Asten F, Michels CT, Hoyng CB, Van Der Wilt GJ, Klevering BJ, Rovers MM. The cost-effectiveness of bevacizumab, ranibizumab and aflibercept for the treatment of age-related macular degeneration a cost-effectiveness analysis from a societal perspective. PLOS One. 2018;13(5):e0197670. doi: 10.1371/journal.pone.0197670, PMID 29772018.

17. Casak SJ, Lemery SJ, Chung J, Fuchs C, Schrieber SJ, Chow EC. FDA’s approval of the first biosimilar to bevacizumab. Clin Cancer Res. 2018;24(18):4365-70. doi: 10.1158/1078-0432.CCR-18-0566, PMID 29743182.

18. Xu X, Zhang S, Xu T, Zhan M, Chen C, Zhang C. Efficacy and safety of bevacizumab biosimilars compared with reference biologics in advanced non-small cell lung cancer or metastatic colorectal cancer patients: a network meta-analysis. Front Pharmacol. 2022;13:880090. doi: 10.3389/fphar.2022.880090, PMID 35865968.

19. Li L, Pan H, Wang H, Li X, Bu X, Wang Q. Interplay between VEGF and Nrf2 regulates angiogenesis due to intracranial venous hypertension. Sci Rep. 2016;6:37338. doi: 10.1038/srep37338, PMID 27869147.

20. Johnson JA, Johnson DA, Kraft AD, Calkins MJ, Jakel RJ, Vargas MR. The Nrf2-ARE pathway: an indicator and modulator of oxidative stress in neurodegeneration. Ann NY Acad Sci. 2008;1147:61-9. doi: 10.1196/annals.1427.036, PMID 19076431.

21. Nita M, Grzybowski A. The role of the reactive oxygen species and oxidative stress in the pathomechanism of the age-related ocular diseases and other pathologies of the anterior and posterior eye segments in adults. Oxid Med Cell Longev. 2016;2016:3164734. doi: 10.1155/2016/3164734, PMID 26881021.

22. Kumar G, Dsouza H, Menon N, Srinivas S, Vallathol DH, Boppana M. Safety and efficacy of bevacizumab biosimilar in recurrent/ progressive glioblastoma. E Cancer Medical Science. 2021;15:1166. doi: 10.3332/ecancer.2021.1166, PMID 33680080.

23. Malik D, Tarek M, Caceres Del Carpio J, Ramirez C, Boyer D, Kenney MC. Safety profiles of anti-VEGF drugs: bevacizumab ranibizumab, aflibercept and ziv-aflibercept on human retinal pigment epithelium cells in culture. Br J Ophthalmol. 2014;98Suppl 1:i11-6. doi: 10.1136/bjophthalmol-2014-305302, PMID 24836865.

24. Jin R, Ogbomo AS, Accortt NA, Lal LS, Bishi G, Sandschafer D. Real world outcomes among patients with metastatic colorectal cancer treated first line with a bevacizumab biosimilar (bevacizumab-awwb). Ther Adv Med Oncol. 2023;15:17588359231182386. doi: 10.1177/17588359231182386, PMID 37360769.

25. Shokoohi S, Iovieno A, Yeung SN. Effect of bevacizumab on the viability and metabolism of human corneal epithelial and endothelial cells: an in vitro study. Transl Vis Sci Technol. 2021;10(8):32. doi: 10.1167/tvst.10.8.32, PMID 34323952.

26. Chae JB, Rho CR, Shin JA, Lyu J, Kang S. Effects of ranibizumab bevacizumab and aflibercept on senescent retinal pigment epithelial cells. Korean J Ophthalmol. 2018;32(4):328-38. doi: 10.3341/kjo.2017.0079, PMID 30091312.

27. Luthra S, Narayanan R, Marques LE, Chwa M, Kim DW, Dong J. Evaluation of in vitro effects of bevacizumab (Avastin) on retinal pigment epithelial neurosensory retinal and microvascular endothelial cells. Retina. 2006;26(5):512-8. doi: 10.1097/01.iae.0000222547.35820.52, PMID 16770256.

28. Hildebrandt J, Kackenmeister T, Winkelmann K, Dorschmann P, Roider J, Klettner A. Pro-inflammatory activation changes intracellular transport of bevacizumab in the retinal pigment epithelium in vitro. Graefes Arch Clin Exp Ophthalmol. 2022;260(3):857-72. doi: 10.1007/s00417-021-05443-2, PMID 34643794.

29. Lim JW. Intravitreal bevacizumab and cytokine levels in major and macular branch retinal vein occlusion. Ophthalmologica. 2011;225(3):150-4. doi: 10.1159/000322364, PMID 21150231.

30. Suzuki Y, Suzuki K, Yokoi Y, Miyagawa Y, Metoki T, Nakazawa M. Effects of intravitreal injection of bevacizumab on inflammatory cytokines in the vitreous with proliferative diabetic retinopathy. Retina. 2014;34(1):165-71. doi: 10.1097/IAE.0b013e3182979df6, PMID 23851630.

31. Weng B, Zhang X, Chu X, Gong X, Cai C. Nrf2-Keap1-ARE-NQO1 signaling attenuates hyperoxia-induced lung cell injury by inhibiting apoptosis. Mol Med Rep. 2021;23(3):221. doi: 10.3892/mmr.2021.11860, PMID 33495821.

32. Loboda A, Damulewicz M, Pyza E, Jozkowicz A, Dulak J. Role of Nrf2/HO-1 system in development oxidative stress response and diseases: an evolutionarily conserved mechanism. Cell Mol Life Sci. 2016;73(17):3221-47. doi: 10.1007/s00018-016-2223-0, PMID 27100828.

33. Li N, Alam J, Venkatesan MI, Eiguren Fernandez A, Schmitz D, Di Stefano E. Nrf2 is a key transcription factor that regulates antioxidant defense in macrophages and epithelial cells: protecting against the proinflammatory and oxidizing effects of diesel exhaust chemicals. J Immunol. 2004;173(5):3467-81. doi: 10.4049/jimmunol.173.5.3467, PMID 15322212.

34. He F, Ru X, Wen T. NRF2, a transcription factor for stress response and beyond. Int J Mol Sci. 2020;21(13):4777. doi: 10.3390/ijms21134777, PMID 32640524.

Published

07-09-2025

How to Cite

PAENSUWAN, P., KHOTCHARRAT, R., THONGSUK, W., & LUANGSAWANG, K. (2025). IN VITRO COMPARATIVE EFFECTS OF BIOSIMILAR AND REFERENCE BEVACIZUMAB ON OXIDATIVE STRESS, INFLAMMATION, AND CYTOTOXICITY IN RETINAL PIGMENT EPITHELIAL CELLS. International Journal of Applied Pharmaceutics, 17(5), 139–145. https://doi.org/10.22159/ijap.2025v17i5.54738

Issue

Section

Original Article(s)

Similar Articles

<< < 41 42 43 44 45 > >> 

You may also start an advanced similarity search for this article.