FORMULATION AND EVALUATION OF DRY POWDER INHALABLE NANOPARTICLES FOR THE TREATMENT OF COVID-19

Authors

  • SAGAR VS Annamalai University, Annamalai nagar, Chidambaram-608002, Tamil Nadu, India https://orcid.org/0009-0008-8610-9512
  • JANAKIRAMAN K. Annamalai University, Annamalai nagar, Chidambaram-608002, Tamil Nadu, India
  • AKHIL Acharya BM Reddy College of Pharmacy, Soldevanahalli, Hesaraghatta Road, Bengaluru, Karnataka-560107, India
  • JOYSA RUBY J. Acharya BM Reddy College of Pharmacy, Soldevanahalli, Hesaraghatta Road, Bengaluru, Karnataka-560107, India https://orcid.org/0000-0003-0584-8150

DOI:

https://doi.org/10.22159/ijap.2025v17i5.54859

Keywords:

Remdesivir, Poloxamer 407, HPMC E3, Solvent evaporation method, Prolonged drug release, Bioavailability

Abstract

Objective: This work sought to develop and assess remdesivir (REM) nanoparticles to achieve increased pulmonary administration, prolonged drug release, and enhanced bioavailability through a polymer-based nanoparticulate system.

Methods: REM nanoparticles were synthesised utilising Poloxamer 407 and HPMC E3 by a solvent evaporation method. The formulation was analysed for drug content, particle size (PS), surface morphology, and thermal properties. In vitro drug release tests were performed to assess the release profile for 48 h. Kinetic modelling was conducted to ascertain the release mechanism, and stability experiments were executed to evaluate long-term formulation stability.

Results: The nanoparticulate system has a PS of 228.3±37.64 to 492.22±174.6 nm and zeta potential (ZP) of-17±5.31 to-27.3±6.76 mV. The F4 nanoparticles exhibited precise drug content and homogenous PS, with Scanning Electron Microscopy (SEM) examination indicating a well-defined surface shape suitable for pulmonary delivery. In vitro release experiments demonstrated a sustained release profile, with 78.96% cumulative release over 48 h. The release mechanism was determined to be non-Fickian diffusion or erosion-controlled. Differential Scanning Calorimetry (DSC) analysis verified the total encapsulation of the medication within the polymer matrix. Stability experiments revealed no substantial alterations in PS, polydispersity index (PDI), ZP throughout the storage period.

Conclusion: The optimised REM nanoparticle formulation (F4) demonstrated favourable attributes for regulated pulmonary drug administration, featuring prolonged release and stable physicochemical features. These findings indicate significant industrial and therapeutic potential; nevertheless, additional clinical assessment is required to verify in vivo efficacy and safety.

References

1. Wang C, Horby PW, Hayden FG, Gao GF. A novel coronavirus outbreak of global health concern. Lancet. 2020 Feb 15;395(10223):470-3. doi: 10.1016/S0140-6736(20)30185-9, PMID 31986257.

2. Rothe C, Schunk M, Sothmann P, Bretzel G, Froeschl G, Wallrauch C. Transmission of 2019-nCoV infection from an asymptomatic contact in germany. N Engl J Med. 2020 Mar 5;382(10):970-1. doi: 10.1056/NEJMc2001468, PMID 32003551.

3. Zou L, Ruan F, Huang M, Liang L, Huang H, Hong Z. SARS-CoV-2 viral load in upper respiratory specimens of infected patients. N Engl J Med. 2020 Mar 19;382(12):1177-9. doi: 10.1056/NEJMc2001737, PMID 32074444.

4. Kampf G, Todt D, Pfaender S, Steinmann E. Persistence of coronaviruses on inanimate surfaces and their inactivation with biocidal agents. J Hosp Infect. 2020 Mar;104(3):246-51. doi: 10.1016/j.jhin.2020.01.022, PMID 32035997.

5. World Health Organization. Situation reports. Available from: https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situationreports/.

6. Cascella M, Rajnik M, Aleem A, Dulebohn SC, Di Napoli R. Features evaluation and treatment of coronavirus (COVID-19). In: Treasure Island, FL: StatPearls; 2025 Jan. PMID 32150360.

7. Teuwen LA, Geldhof V, Pasut A, Carmeliet P. COVID-19: the vasculature unleashed. Nat Rev Immunol. 2020 Jul;20(7):389-91. doi: 10.1038/s41577-020-0343-0, PMID 32439870.

8. Ackermann M, Verleden SE, Kuehnel M, Haverich A, Welte T, Laenger F. Pulmonary vascular endothelialitis thrombosis and angiogenesis in COVID-19. N Engl J Med. 2020 Jul 9;383(2):120-8. doi: 10.1056/NEJMoa2015432, PMID 32437596.

9. Van De Veerdonk FL, Netea MG, Van Deuren M, Van Der Meer JW, De Mast Q, Bruggemann RJ. Kallikrein kinin blockade in patients with COVID-19 to prevent acute respiratory distress syndrome. eLife. 2020 Apr 27;9:e57555. doi: 10.7554/eLife.57555, PMID 32338605.

10. Coopersmith CM, Antonelli M, Bauer SR, Deutschman CS, Evans LE, Ferrer R. The surviving sepsis campaign: research priorities for coronavirus disease 2019 in critical illness. Crit Care Med. 2021 Apr 1;49(4):598-622. doi: 10.1097/CCM.0000000000004895, PMID 33591008.

11. Guo T, Fan Y, Chen M, Wu X, Zhang L, He T. Cardiovascular implications of fatal outcomes of patients with coronavirus disease 2019 (COVID-19). JAMA Cardiol. 2020 Jul 1;5(7):811-8. doi: 10.1001/jamacardio.2020.1017, PMID 32219356.

12. Lin HX, Cho S, Meyyur Aravamudan V, Sanda HY, Palraj R, Molton JS. Remdesivir in coronavirus disease 2019 (COVID-19) treatment: a review of evidence. Infection. 2021 Jun;49(3):401-10. doi: 10.1007/s15010-020-01557-7, PMID 33389708.

13. Pennington E, Bell S, Hill JE. Should video laryngoscopy or direct laryngoscopy be used for adults undergoing endotracheal intubation in the pre-hospital setting? A critical appraisal of a systematic review. J Paramed Pract. 2023;15(6):255-9. doi: 10.1002/14651858, PMID 38812899.

14. Gottlieb RL, Vaca CE, Paredes R, Mera J, Webb BJ, Perez G. Early remdesivir to prevent progression to severe COVID-19 in outpatients. N Engl J Med. 2022 Jan 27;386(4):305-15. doi: 10.1056/NEJMoa2116846, PMID 34937145.

15. Lee TC, Murthy S, Del Corpo O, Senecal J, Butler Laporte G, Sohani ZN. Remdesivir for the treatment of COVID-19: a systematic review and meta-analysis. Clin Microbiol Infect. 2022 Sep;28(9):1203-10. doi: 10.1016/j.cmi.2022.04.018, PMID 35598856.

16. Kantarjian H, Shah NP, Hochhaus A, Cortes J, Shah S, Ayala M. Dasatinib versus imatinib in newly diagnosed chronic-phase chronic myeloid leukemia. N Engl J Med. 2010 Jun 17;362(24):2260-70. doi: 10.1056/NEJMoa1002315, PMID 20525995.

17. Bakheit AH, Darwish H, Darwish IA, Al Ghusn AI. Remdesivir. Profiles Drug Subst Excip Relat Methodol. 2023;48:71-108. doi: 10.1016/bs.podrm.2022.11.003, PMID 37061276.

18. Aman KS, Alka V, Shivam J, Abhishek M, Imran K, Harsh S. Nanosuspension as novel drug delivery approach: a review. Int J Pharm Res App. 2024 Mar;9(2):472-83. doi: 10.35629/7781-0902472483.

19. Verma G, Mishra MK. Pharmaceutical preformulation studies in formulation and development of new dosage form: a review. Int J Pharm Res Rev. 2016 Oct;5(10):12-20.

20. Gorniak A, Czapor Irzabek H, Zlocinska A, Gawin Mikolajewicz A, Karolewicz B. Screening of fenofibrate simvastatin solid dispersions in the development of fixed-dose formulations for the treatment of lipid disorders. Pharmaceutics. 2023 Feb 10;15(2):603. doi: 10.3390/pharmaceutics15020603, PMID 36839925.

21. Humeniuk R, Mathias A, Cao H, Osinusi A, Shen G, Chng E. Safety tolerability and pharmacokinetics of remdesivir an antiviral for treatment of COVID-19 in healthy subjects. Clin Transl Sci. 2020;13(5):896-906. doi: 10.1111/cts.12840, PMID 32589775.

22. Afifi SA, Hassan MA, Abdelhameed AS, Elkhodairy KA. Nanosuspension: an emerging trend for bioavailability enhancement of etodolac. Int J Polym Sci. 2015;2015(2):1-16. doi: 10.1155/2015/938594.

23. Thummar K, Pandya M, Patel N, Rawat F, Chauhan S. Quality by design based development and validation of UV-spectrometric method for the determination of remdesivir in bulk and marketed formulation. Int J Pharm Sci Drug Res. 2022;14(4):385-90. doi: 10.25004/IJPSDR.2022.140404.

24. Sahakijpijarn S, Moon C, Koleng JJ, Christensen DJ, Williams RO. Development of remdesivir as a dry powder for inhalation by thin film freezing. Pharmaceutics. 2020 Oct 22;12(11):1002. doi: 10.3390/pharmaceutics12111002, PMID 33105618.

25. Sahu BP, Hazarika H, Bharadwaj R, Loying P, Baishya R, Dash S. Curcumin docetaxel co-loaded nanosuspension for enhanced anti-breast cancer activity. Expert Opin Drug Deliv. 2016 Aug;13(8):1065-74. doi: 10.1080/17425247.2016.1182486, PMID 27124646.

26. Chary SS, Bhikshapathi DV, Vamsi NM, Kumar JP. Optimizing entrectinib nanosuspension: quality by design for enhanced oral bioavailability and minimized fast-fed variability. BioNanoScience. 2024 May;14(4):4551-69. doi: 10.1007/s12668-024-01462-5.

27. Al Ashmawy AZ, Balata GF. Formulation and in vitro characterization of nanoemulsions containing remdesivir or licorice extract: a potential subcutaneous injection for coronavirus treatment. Colloids Surf B Biointerfaces. 2024 Feb;234:113703. doi: 10.1016/j.colsurfb.2023.113703, PMID 38096607.

28. Patton JS, Byron PR. Inhaling medicines: delivering drugs to the body through the lungs. Nat Rev Drug Discov. 2007 Jan;6(1):67-74. doi: 10.1038/nrd2153, PMID 17195033.

29. Zhang L, Zhou R. Structural basis of the potential binding mechanism of remdesivir to SARS-CoV-2 RNA-dependent RNA polymerase. J Phys Chem B. 2020;124(32):6955-62. doi: 10.1021/acs.jpcb.0c04198, PMID 32521159.

30. Muller RH, Keck CM. Twenty years of drug nanocrystals: where are we and where do we go? Eur J Pharm Biopharm. 2012;80(1):1-3. doi: 10.1016/j.ejpb.2011.09.012, PMID 21971369.

31. Mansour HM, Rhee YS, Wu X. Nanomedicine in pulmonary delivery. Int J Nanomedicine. 2009;4:299-319. doi: 10.2147/ijn.s4937, PMID 20054434.

32. Labiris NR, Dolovich MB. Pulmonary drug delivery. Part I: physiological factors affecting therapeutic effectiveness of aerosolized medications. Br J Clin Pharmacol. 2003 Dec;56(6):588-99. doi: 10.1046/j.1365-2125.2003.01892.x, PMID 14616418.

33. Sahakijpijarn S, Smyth HD, Miller DP, Weers JG. Post inhalation cough with therapeutic aerosols: formulation considerations. Adv Drug Deliv Rev. 2020 Jul;165-166:127-41. doi: 10.1016/j.addr.2020.05.003, PMID 32417367.

34. Srinivasan G, Shetty A. Advancements in dry powder inhaler. Asian J Pharm Clin Res. 2017;10(2):8-12. doi: 10.22159/ajpcr.2017.v10i2.14282.

35. Khalifa NE, Nur AO, Osman ZA. Artemether loaded ethyl cellulose nanosuspensions effects of formulation variables physical stability and drug release profile. Int J Pharm Pharm Sci. 2017 Jun 1;9(6):90-6. doi: 10.22159/ijpps.2017v9i6.18321.

36. Patel RK, Singh PK, Pandey R, Patel B, Mishra S. Amino acid status of bovine milk under seasonal variation around Singrauli district. Int J Chem Res. 2021;5(3):1-4. doi: 10.22159/ijcr.2021v5i3.170.

37. Aher SS, Sagar TM, Saudagar RB. Nanosuspension: an overview. Integr J Curr Pharm Rese. 2017 May;9(3):19-23. doi: 10.22159/ijcpr.2017.v9i3.19584.

Published

07-09-2025

How to Cite

VS, S., K., J., AKHIL, & J., J. R. (2025). FORMULATION AND EVALUATION OF DRY POWDER INHALABLE NANOPARTICLES FOR THE TREATMENT OF COVID-19. International Journal of Applied Pharmaceutics, 17(5), 227–237. https://doi.org/10.22159/ijap.2025v17i5.54859

Issue

Section

Original Article(s)

Similar Articles

<< < 152 153 154 155 156 > >> 

You may also start an advanced similarity search for this article.