IN VITRO EVALUATION OF TETRACYCLINE-LOADED CHITOSAN CHIPS AGAINST PERIODONTAL PATHOGENS

Authors

  • SAVANA ERSA Department of Periodontics, Faculty of Dentistry, Universitas Sumatera Utara, Medan, Indonesia
  • IRMA ERVINA Department of Periodontics, Faculty of Dentistry, Universitas Sumatera Utara, Medan, Indonesia
  • HARRY AGUSNAR Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Sumatera Utara, Medan, Indonesia
  • ARMIA SYAHPUTRA Department of Periodontics, Faculty of Dentistry, Universitas Sumatera Utara, Medan, Indonesia
  • AINI HARIYANI NASUTION Department of Periodontics, Faculty of Dentistry, Universitas Sumatera Utara, Medan, Indonesia

DOI:

https://doi.org/10.22159/ijap.2025.v17s5.07

Keywords:

Periodontal pathogens, Chip, Tetracycline, Chitosan

Abstract

Objective: A periodontal pathogen is the main cause of periodontitis. Tetracycline has demonstrated its ability to impede the proliferation of periodontal pathogens. A chip is a device that employs a matrix to distribute drugs evenly into a polymer. The release of the drugs occurs through the process of drug diffusion. It possesses numerous benefits in terms of appealing physical characteristics for use within a pocket. Chitosan is a naturally occurring biopolymer with favorable characteristics for use as a drug delivery system.

Methods: Using solvent casting, chitosan-based periodontal chips containing 0.7% tetracycline were created. Scanning Electron Microscopy (SEM) and Fourier transform infrared (FTIR) were used to characterize the structure and morphology of the chitosan-based periodontal chip. The antibacterial performance was analyzed against A. actinomycetemcomitans, P. gingivalis, and F. nucleatum bacteria grown in an MHA medium.

Results: Based on the results of SEM analysis at 1000x magnification, tetracycline can be seen on the surface of chitosan, while FTIR analysis shows compatibility between chitosan and tetracycline. The average diameter of the inhibition zone of chitosan-based periodontal chips containing 0.7% tetracycline towards P. gingivalis, A. actinomycetemcomitans and F. nucleatum were 14.75±0.75 mm, 25.67±2.082 mm, and 35.33±0.764 mm. In tests on Aa and Fn bacteria, the inhibition zone was larger compared to the PerioChipâ. The ANOVA test revealed statistically significant variations in the average diameter of the inhibitory zone across different groups when tested against periodontal infections.

Conclusion: This research has shown potent antimicrobial activity of chitosan-based periodontal chips containing 0.7 % tetracycline against A. actinomycetemcomitans, P. gingivalis, and F. nucleatum. This reseaerch showed more microbial activity than PerioChipâ for A. actinomycetemcomitans and F. nucleatum.

References

1. Graziani F, Karapetsa D, Alonso B, Herrera D. Nonsurgical and surgical treatment of periodontitis: how many options for one disease? Periodontol 2000. 2017;75(1):152-88. doi: 10.1111/prd.12201, PMID 28758300.

2. Tonetti MS, Greenwell H, Kornman KS. Staging and grading of periodontitis: framework and proposal of a new classification and case definition. J Periodontol. 2018;89(Suppl 1):S159-72. doi: 10.1002/JPER.18-0006, PMID 29926952.

3. Susanto C, Ervina I, Agusnar H. In vitro evaluation of antimicrobial effectiveness of chitosan-based tetracycline gel on some pathogenic periodontal bacteria. Int J Appl Dent Sci. 2017;3(2):71-6.

4. Adha N, Ervina I, Agusnar H. The effectiveness of metronidazole gel-based chitosan inhibits the growth of bacteria Aggregatibacter actinomycetemcomitans, Porphyromonas gingivalis, Fusobacterium nucleatum (in vitro). Int J Appl Dent Sci. 2017;3(2):30-7.

5. Lunar Silva I, Cascales E. Molecular strategies underlying Porphyromonas gingivalis virulence. J Mol Biol. 2021;433(7):166836. doi: 10.1016/j.jmb.2021.166836, PMID 33539891.

6. How KY, Song KP, Chan KG. Porphyromonas gingivalis: an overview of periodontopathic pathogen below the gum line. Front Microbiol. 2016;7(53):53. doi: 10.3389/fmicb.2016.00053, PMID 26903954.

7. Gholizadeh P, Pormohammad A, Eslami H, Shokouhi B, Fakhrzadeh V, Kafil HS. Oral pathogenesis of Aggregatibacter actinomycetemcomitans. Microb Pathog. 2017;113:303-11. doi: 10.1016/j.micpath.2017.11.001, PMID 29117508.

8. Meng Q, Gao Q, Mehrazarin S, Tangwanichgapong K, Wang Y, Huang Y. Fusobacterium nucleatum secretes amyloid-like FadA to enhance pathogenicity. EMBO Rep. 2021;22(7):e52891. doi: 10.15252/embr.202152891, PMID 34184813.

9. Escalante Herrera A, Chaves M, Villamil JC, Roa NS. In vitro assessment of the antimicrobial activity of tetracycline hydrochloride diluted in three different vehicles against Porphyromonas gingivalis, Prevotella intermedia, and Fusobacterium nucleatum. J Indian Soc Periodontol. 2022 Mar-Apr;26(2):104-9. doi: 10.4103/jisp.jisp_661_20, PMID 35321298.

10. Klokkevold P, Newman MG, Takei H, Carranza F. Newman and Carranza’s clinical periodontology. Elsevier Health Sciences; 2018.

11. Fakhri E, Eslami H, Maroufi P, Pakdel F, Taghizadeh S, Ganbarov K. Chitosan biomaterials application in dentistry. Int J Biol Macromol. 2020;162:956-74. doi: 10.1016/j.ijbiomac.2020.06.211, PMID 32599234.

12. Notario Perez F, Martin Illana A, Cazorla Luna R, Ruiz Caro R, Veiga MD. Applications of chitosan in surgical and post-surgical materials. Mar Drugs. 2022;20(6):396. doi: 10.3390/md20060396, PMID 35736199.

13. Po-Hsiang C, Jiang WT, Li Z, Jean JS, CTK. Antibiotic tetracycline in the environments-a review. J Pharm Anal. 2015;4(3):86-111.

14. Sachdeva S, Agarwal V. Evaluation of commercially available biodegradable tetracycline fiber therapy in chronic periodontitis. J Indian Soc Periodontol. 2011;15(2):130-4. doi: 10.4103/0972-124X.84381, PMID 21976836.

15. Andrew A, Ervina I, Agusnar H. In vitro chitosan hydrogel-based tetracycline cytotoxicity test on fibroblast viability. In: Proceedings of the 11th International Dentistry Scientific Meeting (IDSM 2017). Jakarta, Indonesia: Atlantis Press; 2018. doi: 10.2991/idsm-17.2018.36.

16. Jhinger N, Kapoor D, Jain R. Comparison of PerioChip (chlorhexidine gluconate 2.5 mg) and Arestin (minocycline hydrochloride 1 mg) in the management of chronic periodontitis. Indian J Dent. 2015;6(1):20-6. doi: 10.4103/0975-962X.151697, PMID 25767356.

17. Khan G, Yadav SK, Patel RR, Nath G, Bansal M, Mishra B. Development and evaluation of biodegradable chitosan films of metronidazole and levofloxacin for the management of periodontitis. AAPS PharmSciTech. 2016;17(6):1312-25. doi: 10.1208/s12249-015-0466-y, PMID 26689408.

18. Gad MK, Mohamed MI, Abdelgawad WY. Formulation and evaluation of gemifloxacin intra-pocket film for periodontitis. World J Pharm Res. 2017;6(16):20-32. doi: 10.20959/wjpr201716-10177.

19. Naik S, Raikar P, Ahmed MG. Formulation and evaluation of chitosan films containing sparfloxacin for the treatment of periodontitis. J Drug Delivery Ther. 2019;9(1):38-45. doi: 10.22270/jddt.v9i1.2245.

20. Amalia M, Ervina I, Bangun H. An in vitro evaluation of the antimicrobial effectiveness of alginate-based metronidazole gel against Aggregatibacter actinomycetemcomitans. In: 11th International Dentistry Scientific Meeting (IDSM 2017). Atlantis Press; 2018. p. 306-11. doi: 10.2991/idsm-17.2018.41.

21. Caroni AL, De Lima CR, Pereira MR, Fonseca JL. Tetracycline adsorption on chitosan: a mechanistic description based on mass uptake and zeta potential measurements. Colloids Surf B Biointerfaces. 2012;100:222-8. doi: 10.1016/j.colsurfb.2012.05.024, PMID 22771527.

22. Groeger S, Denter F, Lochnit G, Schmitz ML, Meyle J. Porphyromonas gingivalis cell wall components induce programmed death ligand 1 (PD-L1) expression on human oral carcinoma cells by a receptor-interacting protein kinase 2 (RIP2)-dependent mechanism. Infect Immun. 2020;88(5):e00051-20. doi: 10.1128/IAI.00051-20, PMID 32041789.

23. Jalaluddin M, Kulkarni A, Raj K, Kumari D, Devi KB, Vineeth NS. Assessment of antimicrobial efficacy of chitosan-based tetracycline gel on periodontal pathogens: an in vitro study. J Pharm Bioallied Sci. 2023;15(Suppl 1):S438-41. doi: 10.4103/jpbs.jpbs_532_22, PMID 37654396.

24. Ervina I, Amalia M, Nasution EE, Agusnar H, Wulandari P, Nasution RO. Effectiveness of chitosan nanoparticle containing 0.7% tetracyclines on clinical parameters and fibroblast growth: factor-2 in rat models. Int J Appl Pharm. 2024;16(2):43-50. doi: 10.22159/Ijap.2024.V16s2.10.

25. Mombelli A, Cionca N, Almaghlouth A. Does adjunctive antimicrobial therapy reduce the perceived need for periodontal surgery? Periodontol 2000. 2011;55(1):205-16. doi: 10.1111/j.1600-0757.2010.00356.x, PMID 21134236.

26. Ramachanderan R, Schaefer B. Tetracycline antibiotics. ChemTexts. 2021;7(3):18. doi: 10.1007/s40828-021-00138-x.

27. Annisa ZU, Sulijaya B, Tadjoedin ES, Hutomo DI, Masulili SL. Effectiveness of chlorhexidine gels and chips in periodontitis patients after scaling and root planing: a systematic review and meta-analysis. BMC Oral Health. 2023;23(1):819. doi: 10.1186/s12903-023-03241-2, PMID 37899443.

Published

25-12-2025

How to Cite

ERSA, S., ERVINA, I., AGUSNAR, H., SYAHPUTRA, A., & NASUTION, A. H. (2025). IN VITRO EVALUATION OF TETRACYCLINE-LOADED CHITOSAN CHIPS AGAINST PERIODONTAL PATHOGENS. International Journal of Applied Pharmaceutics, 17(5), 50–55. https://doi.org/10.22159/ijap.2025.v17s5.07

Issue

Section

Original Article(s)

Most read articles by the same author(s)

1 2 > >> 

Similar Articles

<< < 40 41 42 43 44 > >> 

You may also start an advanced similarity search for this article.