THE IMPACT OF PEPTONE-INDUCED HYPERTHERMIA ON FETAL ANOMALIES IN WHITE MICE (MUS MUSCULUS)

Authors

  • YOHANNES ALEN Faculty of Pharmacy Universitas Andalas Padang-25163, Indonesia
  • HANSEN NASIF Faculty of Pharmacy Universitas Andalas Padang-25163, Indonesia
  • MEISYA DWI ASRI Faculty of Pharmacy Universitas Andalas Padang-25163, Indonesia https://orcid.org/0000-0001-6691-7071
  • DWISARI DILLASAMOLA Faculty of Pharmacy Universitas Andalas Padang-25163, Indonesia

DOI:

https://doi.org/10.22159/ijap.2025.v17s1.24

Keywords:

Hyperthermia, Peptone, Anomalies, Morphological, Skeletal

Abstract

Objective: Hyperthermia is an increase in body temperature above 37.5 °C, which can be caused by environmental factors such as infections that disrupt hypothalamic thermoregulation and trigger a rise in body temperature.

Methods: The aim of this study was to assess the impact of hyperthermia on fetal anomalies in white mice using 10% peptone as the inducer. The study involved 15 white mice divided into three groups. Peptone 10% was administered to two treatment groups, with the administration time divided into two phases: group 1 on days 3-7 of mouse pregnancy and group 2 on days 8-12 of mouse pregnancy. Parameters observed included maternal weight gain, number of fetuses, and fetal weight analyzed using one-way Analysis of Variance (ANOVA) test, as well as morphological and skeletal abnormalities analyzed descriptively through photographs.

Results: The average initial temperature of the female mice in the control group, group 1 and group 2 was 35.4 °C, 35.7 °C, and 35.8 °C, respectively, while the average final temperature of the female mice in the control group, group 1 and group 2 was 35.4 °C, 38.0 °C, and 37.9 °C, respectively. The results showed no significant differences in maternal weight gain and number of fetuses between the treatment group and the control group (p>0.05). However, there was a significant difference in fetal weight between the treatment group and the control group (p<0.05). Descriptive observations revealed anomalies in fetuses fixed with Bouin's solution, including resorption sites, delayed growth, and hemorrhage. In contrast, fetuses fixed with alizarin red showed defects in the 14th rib, metacarpal, and metatarsal bones.

Conclusion: Based on these findings, it is concluded that hyperthermia can affect fetal anomalies in white mice.

References

Salder TW, Langman J. Langman’s medical embryology. 12th ed. Philadelphia: Wolters Kluwer Health/lippincott Williams & Wilkins; 2012.

Miao H, Wu H, Zhu Y, Kong L, Yu X, Zeng Q. Congenital anomalies associated with ambient temperature variability during fetal organogenesis period of pregnancy: evidence from 4.78 million births. Sci Total Environ. 2021;798:149305. doi: 10.1016/j.scitotenv.2021.149305, PMID 34340080.

World Health Organization. World health statistics. Geneva: World Health Organization; 2012.

Edwards MJ. Review: hyperthermia and fever during pregnancy. Birth Defects Res A Clin Mol Teratol. 2006;76(7):507-16. doi: 10.1002/bdra.20277, PMID 16933304.

Gerard JT, Derricson B. Principle of anatomy and physiology. 3rd ed. Biological Science Textbooks; 2012.

Graham JM. Update on the gestational effects of maternal hyperthermia. Birth Defects Res. 2020;112(12):943-52. doi: 10.1002/bdr2.1696, PMID 32686349.

Amani FZ, P WM, I CN, A AR, E GK, I AM. Clinical characteristic of congenital fetal anomaly in tertiary referral Hospital in East Java, Indonesia. IIMJ. 2021;2(2):40-6. doi: 10.33086/iimj.v2i2.1624.

Mochtar CF, Aisyiyah1 NM, Antipiretik A, Ekstrak DA, Bopot D, Kabupaten D. Antipyretic and antiinflammatory activities of bopot leaf extract from Kutai Kartanegara District. Indonesian Journal of Pharmaceutical Science and Technology Journal Homepage. 2023;5(1):80-9. doi: 10.24198/ijpst.v0i0.46188.

Mercya Y, Christian R, Firmansyah YW. Antipyretic effects of earthworm extracts on peptone-induced fever in mice. Int J Des Nat Ecodyn. 2024;19(1):185-90. doi: 10.18280/ijdne.190120.

Sass L, Urhoj SK, Kjærgaard J, Dreier JW, Strandberg Larsen K, Nybo Andersen AM. Fever in pregnancy and the risk of congenital malformations: a cohort study. BMC Pregnancy Childbirth. 2017;17(1):413. doi: 10.1186/s12884-017-1585-0, PMID 29221468.

Cunningham FL. Williams obstetrics. 25th ed. New York: McGraw-Hill Education/Medical; 2018.

Mutiarahmi CN, Hartady T, Lesmana R. Use of mice as experimental animals in laboratories that refer to the principles of animal welfare: a literature review. Indones Med Veterinus. 2021;10(1):134-45. doi: 10.19087/imv.2021.10.1.134.

Byers SL, Wiles MV, Dunn SL, Taft RA. Mouse estrous cycle identification tool and images. PLOS One. 2012 Apr 13;7(4):e35538. doi: 10.1371/journal.pone.0035538, PMID 22514749.

Sandra D, Argueta E, Wacher NH, Silva M, Valdez L, Cruz M. PMK RI herbal medicine formulary. Cienc Biol. 2015.

Ezeuko V. Toxic effects of antituberculosis drugs isoniazid and rifampicin on reto-placental unit of wistar rats: a morphological, histological and biochemical study orbital index among igbo ethnic group of Nigeria. Radiol Study View Proj Placental Toxicol View Proj J Clin. 2019;3(1). doi: 10.4066/2630-4570.018.

Guyton A, Hall J. Text book of medical physiology. Vol. 12. Amsterdam: Elsevier Saunders; 2014.

Medeiros A, Peres Buzalaf C, Fortino Verdan F, Serezani CH. Prostaglandin E2 and the suppression of phagocyte innate immune responses in different organs. Mediators Inflamm. 2012;2012:327568. doi: 10.1155/2012/327568, PMID 23024463.

Sianturi S, Muti AF, Perdana MB. Teratogenic test of instant noodle boiled water during pregnancy in female mice (Mus musculus L.) through observation of fetal morphological abnormalities. J Sains Kesehat. 2020;2(3);182-1923. doi: 10.25026/jsk.v2i3.140.

Bernard S, Loukas M, Rizk E, Oskouian RJ, Delashaw J, Tubbs RS. The human occipital bone: review and update on its embryology and molecular development. Childs Nerv Syst. 2015;31(12):2217-23. doi: 10.1007/s00381-015-2870-8, PMID 26280629.

Edwards MJ, Saunders RD, Shiota K. Effects of heat on embryos and foetuses. Int J Hyperthermia. 2003;19(3):295-324. doi: 10.1080/0265673021000039628, PMID 12745973.

Swan J, Boyer S, Westlund K, Bengtsson C, Nordahl G, Tornqvist E. Decreased levels of discomfort in repeatedly handled mice during experimental procedures, assessed by facial expressions. Front Behav Neurosci. 2023 Feb 2;17:1109886. doi: 10.3389/fnbeh.2023.1109886, PMID 36873771, PMCID PMC9978997.

Graham JM Jr. Update on the gestational effects of maternal hyperthermia. Birth Defects Res. 2020 Jul 15;112(12):943-52. doi: 10.1002/bdr2.1696, PMID 32686349.

Roy P, Kumar SS, Manna K, Das A. Resveratrol protects whole body heat stressed-nduced testicular damage in rat model. Asian J Pharm Clin Res. 2022;15(5):27-33. doi: 10.22159/ajpcr.2022.v15i5.43968.

Yadav N, Upadhyay RK. Centipede venom toxins and its biomedical and pharmacological properties. Int J Pharm Pharm Sci. 2022;14(9):1-7. doi: 10.22159/ijpps.2022v14i9.45488.

Published

24-02-2025

How to Cite

ALEN, Y., NASIF, H., ASRI, M. D., & DILLASAMOLA, D. (2025). THE IMPACT OF PEPTONE-INDUCED HYPERTHERMIA ON FETAL ANOMALIES IN WHITE MICE (MUS MUSCULUS). International Journal of Applied Pharmaceutics, 17(1), 162–166. https://doi.org/10.22159/ijap.2025.v17s1.24

Issue

Section

Original Article(s)

Similar Articles

<< < 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.