DEVELOPMENT AND OPTIMIZATIONS OF TRANSETHOSOMAL GEL LOADED WITH RUBIA CORDIFOLIA EXTRACT FOR TREATMENT OF PSORIASIS

Authors

  • POOJA GAJANAN AKOSHKAR Department of Pharmaceutics, PRES’s College of Pharmacy (For Women), Chincholi, Sinnar, Nashik-422102, India
  • RAHUL DHYANESHWAR KHAIRE Department of Pharmaceutics, PRES’s College of Pharmacy (For Women), Chincholi, Sinnar, Nashik-422102, India https://orcid.org/0000-0002-7323-839X
  • VIKAS DAMU KUNDE Department of Pharmaceutics, PRES’s College of Pharmacy (For Women), Chincholi, Sinnar, Nashik-422102, India

DOI:

https://doi.org/10.22159/ijap.2025v17i6.55717

Keywords:

Rubia cordifolia, Transethosomes, Psoriasis, Topical delivery, Box–behnken design, Skin permeation

Abstract

Objective: This study aimed to develop and optimize a transethosomal gel loaded with Rubia cordifolia extract to enhance its topical delivery and therapeutic efficacy for the treatment of psoriasis.

Methods: A box–behnken factorial design was employed to optimize transethosome formulations using three independent variables: Phospholipon 90 G, sodium deoxycholate, and ethanol concentration. Vesicle size, zeta potential, and entrapment efficiency were evaluated as responses. The optimized batch was incorporated into a gel using Carbopol 940 and Gellan gum. The formulations were assessed for physicochemical properties, ex-vivo skin permeation, and accelerated stability.

Results: Among 17 formulations, the optimized batch (F13), selected based on desirability and experimental validation, showed a vesicle size of 111.73 nm, zeta potential of −28.15 mV, and entrapment efficiency of 86.54%. The optimized transethosomal gel (TF3) exhibited pH of 6.02 ± 0.04, viscosity of 21,873 ± 157 cP, spreadability of 30.92 ± 1.15 g·cm/s, and drug content of 98.42 ± 0.95%. TF3 demonstrated sustained drug release (91.05 ± 2.32% over 12 h), steady-state flux of 7.59 µg/cm²/h for TF3 formulation and remained stable over three months under accelerated conditions.

Conclusion: The optimized transethosomal gel effectively enhanced the solubility, stability, and skin permeation of Rubia cordifolia extract. While permeation enhancement was demonstrated, anti-psoriatic efficacy validation through in vitro and in vivo studies is required to confirm therapeutic potential for psoriasis management. These findings suggest promising translational value, warranting further in vivo and clinical investigations.

References

1. Gangadevi V, Thatikonda S, Pooladanda V, Devabattula G, Godugu C. Selenium nanoparticles produce a beneficial effect in psoriasis by reducing epidermal hyperproliferation and inflammation. J Nanobiotechnology. 2021;19(1):101. doi: 10.1186/s12951-021-00842-3, PMID 33849555.

2. Tashiro T, Sawada Y. Psoriasis and systemic inflammatory disorders. Int J Mol Sci. 2022;23(8):4457. doi: 10.3390/ijms23084457, PMID 35457278.

3. Deng Y, Fang Z, Cui S, Zhao J, Zhang H, Chen W. Evaluation of probiotics for inhibiting hyperproliferation and inflammation relevant to psoriasis in vitro. J Funct Foods. 2021;81:104433. doi: 10.1016/j.jff.2021.104433.

4. Mercurio L, Morelli M, Scarponi C, Scaglione GL, Pallotta S, Albanesi C. PI3Kδ sustains keratinocyte hyperproliferation and epithelial inflammation: implications for a topically druggable target in psoriasis. Cells. 2021;10(10):2636. doi: 10.3390/cells10102636, PMID 34685616.

5. Tang X, Liu X, Mikaye MS, Zhao H, Zhang Y. Traditional Chinese medicine in the treatment of high incidence diseases in cold areas: the thrombotic diseases. Frigid Zone Med. 2021;1(1):23-44. doi: 10.2478/fzm-2021-0005.

6. Khan MS, Aziz S, Khan MZ, Khalid ZM, Riaz M, Ahmed D. Antihyperglycemic effect and phytochemical investigation of Rubia cordifolia (Indian Madder) leaves extract. Open Chem. 2021;19(1):586-99. doi: 10.1515/chem-2021-0053.

7. Soni U, Malviya J, Singh D. Ethno-botanical study of medicinal plants from Vidisha, Madhya Pradesh: methanolic extracts of four species and their antimicrobial anti-inflammatory and toxicity properties. Macromolecular Symposia. 2024;413(2):2300094. doi: 10.1002/masy.202300094.

8. Watroly MN, Sekar M, Fuloria S, Gan SH, Jeyabalan S, Wu YS. Chemistry biosynthesis physicochemical and biological properties of rubiadin: a promising natural anthraquinone for new drug discovery and development. Drug Des Dev Ther. 2021;15:4527-49. doi: 10.2147/DDDT.S338548, PMID 34764636.

9. El Zaafarany GM, Nasr M. Insightful exploring of advanced nanocarriers for the topical/transdermal treatment of skin diseases. Pharm Dev Technol. 2021;26(10):1136-57. doi: 10.1080/10837450.2021.2004606, PMID 34751091.

10. Golestani P. Lipid based nanoparticles as a promising treatment for the skin cancer. Heliyon. 2024;10(9):e29898. doi: 10.1016/j.heliyon.2024.e29898, PMID 38698969.

11. Patel D, Patel B, Thakkar H. Lipid based nanocarriers: promising drug delivery system for topical application. Eur J Lipid Sci Technol. 2021;123(5):2000264. doi: 10.1002/ejlt.202000264.

12. Paiva Santos AC, Silva AL, Guerra C, Peixoto D, Pereira Silva M, Zeinali M. Ethosomes as nanocarriers for the development of skin delivery formulations. Pharm Res. 2021;38(6):947-70. doi: 10.1007/s11095-021-03053-5, PMID 34036520.

13. Wang Y, Wang R, Qi X, Li W, Guan Q, Wang R. Novel transethosomes for the delivery of brucine and strychnine: formulation optimization characterization and in vitro evaluation in hepatoma cells. J Drug Deliv Sci Technol. 2021;64:102425. doi: 10.1016/j.jddst.2021.102425.

14. Yurtsever AG, Ekmekcioglu A, Muftuoglu M, Gungor S, Erdal MS. Formulation development and evaluation of fluvastatin loaded transethosomes: characterization stability in vitro dermal penetration cytotoxicity and antipsoriatic activity studies. J Drug Deliv Sci Technol. 2024;91:105234. doi: 10.1016/j.jddst.2023.105234.

15. Alyami MH, Alyami HS, Abdo AM, A Sabry SA, El Nahas HM, Ayoub MM. Maximizing the use of ivermectin transethosomal cream in the treatment of scabies. Pharmaceutics. 2024;16(8):1026. doi: 10.3390/pharmaceutics16081026, PMID 39204371.

16. Baghli F, Moussaoui Khedam N. Optimization of the experimental design parameters for synthesis of fluconazole loaded transethosomes as nano-based antifungal vesicles. GSC Biol Pharm Sci. 2024;28(3):71-83. doi: 10.30574/gscbps.2024.28.3.0317.

17. Adin SN, Gupta I, Aqil M, Mujeeb M, Najmi AK. Synergistically engineered nanotransethosomes for co-delivery of methotrexate and baicalin for enhanced transdermal delivery against rheumatoid arthritis: formulation characterisation and in vivo pharmacodynamic evaluation. J Drug Target. 2024;32(6):707-23. doi: 10.1080/1061186X.2024.2347371, PMID 38652489.

18. Adin SN, Gupta I, Aqil M, Mujeeb M, Najmi AK. Nanotransethosomal dual-drug loaded gel of methotrexate and mangiferin as a potent synergistic intervention for rheumatoid arthritis via transdermal delivery. J Drug Target. 2025;33(5):773-92. doi: 10.1080/1061186X.2024.2447793, PMID 39723960.

19. Adnan M, Haider MF, Naseem N, Haider T. Transethosomes: a promising challenge for topical delivery short title: transethosomes for topical delivery. Drug Res (Stuttg). 2023;73(4):200-12. doi: 10.1055/a-1974-9078, PMID 36736354.

20. Atia HA, Shahien MM, Ibrahim S, Ahmed EH, Elariny HA, Abdallah MH. Plant-based nanovesicular gel formulations applied to skin for ameliorating the anti-inflammatory efficiency. Gels. 2024;10(8):525. doi: 10.3390/gels10080525, PMID 39195054.

21. Nayak BS, Mohanty B, Mishra B, Roy H, Nandi S. Transethosomes: cutting edge approach for drug permeation enhancement in transdermal drug delivery system. Chem Biol Drug Des. 2023;102(3):653-67. doi: 10.1111/cbdd.14254, PMID 37062593.

22. Verma S, Utreja P. Exploring therapeutic potential of invasomes transfersomes transethosomes oleic acid vesicles and cubosomes adopting topical/transdermal route. MNS. 2022;14(1):3-20. doi: 10.2174/1876402913666210406163452.

23. Cocos FI. A quality-by-design approach for optimisation of docetaxel transferosomal formulations. Farmacia. 2024;72(5):1077-91. doi: 10.31925/farmacia.2024.5.10.

24. Lizzie LOBO C, Priya S. Design and characterization of transethosomes loaded with rivastigmine for enhanced transdermal delivery. JRP. 2024;28(5):1409-22. doi: 10.29228/jrp.819.

25. Lestari PM, Harahap Y, Louisa M, Surini S. Development of transethosomes patch for delivery atorvastatin calcium transdermally: in vitro and in vivo studies. J Pharm Sci. 2025;114(4):103695. doi: 10.1016/j.xphs.2025.02.001, PMID 39947616.

26. Aldawsari MF, Alam A, Imran M. Rutin loaded transethosomal gel for topical application: a comprehensive analysis of skin permeation and antimicrobial efficacy. ACS Omega. 2024;9(25):27300-11. doi: 10.1021/acsomega.4c01718, PMID 38947795.

27. Rodriguez Luna A, Talero E, Avila Roman J, Romero AM, Rabasco AM, Motilva V. Preparation and in vivo evaluation of rosmarinic acid-loaded transethosomes after percutaneous application on a psoriasis animal model. AAPS PharmSciTech. 2021;22(3):103. doi: 10.1208/s12249-021-01966-3, PMID 33712964.

28. Khalid H, Batool S, Din FU, Khan S, Khan GM. Macrophage targeting of nitazoxanide loaded transethosomal gel in cutaneous leishmaniasis. R Soc Open Sci. 2022;9(10):220428. doi: 10.1098/rsos.220428, PMID 36249328.

29. Asghar Z, Jamshaid T, Jamshaid U, Madni A, Akhtar N, Lashkar MO. In vivo evaluation of miconazole nitrate loaded transethosomal gel using a rat model infected with Candida albicans. Pharmaceuticals (Basel). 2024;17(5):546. doi: 10.3390/ph17050546, PMID 38794118.

30. Kamble S, Bangale G, Deshmukh R, Dawargave K, Shingare D, Suryawanshi O. Development and optimization of nimesulide loaded transethosomal gel. Bio Nano Science. 2025;15(2):223. doi: 10.1007/s12668-025-01802-z.

31. Adnan M, Afzal O, SA Altamimi A, Alamri MA, Haider T, Faheem Haider M. Development and optimization of transethosomal gel of apigenin for topical delivery: in vitro, ex-vivo and cell line assessment. Int J Pharm. 2023;631:122506. doi: 10.1016/j.ijpharm.2022.122506, PMID 36535455.

32. Ferrara F, Benedusi M, Cervellati F, Sguizzato M, Montesi L, Bondi A. Dimethyl fumarate loaded transethosomes: a formulative study and preliminary ex vivo and in vivo evaluation. Int J Mol Sci. 2022;23(15):8756. doi: 10.3390/ijms23158756, PMID 35955900.

33. Abdulbaqi IM, Darwis Y, Assi RA, Khan NA. Transethosomal gels as carriers for the transdermal delivery of colchicine: statistical optimization characterization and ex vivo evaluation. Drug Des Dev Ther. 2018;12:795-813. doi: 10.2147/DDDT.S158018, PMID 29670336.

34. Garg V, Singh H, Bhatia A, Raza K, Singh SK, Singh B. Systematic development of transethosomal gel system of piroxicam: formulation optimization in vitro evaluation and ex vivo assessment. AAPS PharmSciTech. 2017;18(1):58-71. doi: 10.1208/s12249-016-0489-z, PMID 26868380.

35. Verma S, Utreja P. Transethosomes of econazole nitrate for transdermal delivery: development in vitro characterization and ex-vivo assessment. Pharm Nanotechnol. 2018;6(3):171-9. doi: 10.2174/2211738506666180813122102, PMID 30101725.

36. Ramadon D, Pramesti SS, Anwar E. Formulation stability test and in vitro penetration study of transethosomal gel containing green tea (Camellia sinensis L. Kuntze) leaves extract. Int J App Pharm. 2017;9(5):91. doi: 10.22159/ijap.2017v9i5.20073.

37. Arora D, Khurana B, Nanda S. Statistical development and in vivo evaluation of resveratrol loaded topical gel containing deformable vesicles for a significant reduction in photo-induced skin aging and oxidative stress. Drug Dev Ind Pharm. 2020;46(11):1898-910. doi: 10.1080/03639045.2020.1826507, PMID 32962434.

38. Kaur P, Garg V, Bawa P, Sharma R, Singh SK, Kumar B. Formulation systematic optimization in vitro ex vivo and stability assessment of transethosome based gel of curcumin. Asian J Pharm Clin Res. 2018;11(14)Suppl 2:41. doi: 10.22159/ajpcr.2018.v11s2.28563.

39. Fu X, Shi Y, Wang H, Zhao X, Sun Q, Huang Y. Ethosomal gel for improving transdermal delivery of thymosin β-4. Int J Nanomedicine. 2019;14:9275-84. doi: 10.2147/IJN.S228863, PMID 31819429.

40. Abdallah MH, Shawky S, Shahien MM, El Horany HE, Ahmed EH, El Housiny S. Development and evaluation of nano-vesicular emulsion based gel as a promising approach for dermal atorvastatin delivery against inflammation. Int J Nanomedicine. 2024;19:11415-32. doi: 10.2147/IJN.S477001, PMID 39530108.

Published

07-11-2025

How to Cite

AKOSHKAR, P. G., KHAIRE, R. D., & KUNDE, V. D. (2025). DEVELOPMENT AND OPTIMIZATIONS OF TRANSETHOSOMAL GEL LOADED WITH RUBIA CORDIFOLIA EXTRACT FOR TREATMENT OF PSORIASIS. International Journal of Applied Pharmaceutics, 17(6), 241–254. https://doi.org/10.22159/ijap.2025v17i6.55717

Issue

Section

Original Article(s)

Similar Articles

<< < 106 107 108 109 110 > >> 

You may also start an advanced similarity search for this article.